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Abstract

We develop a new approach for evaluating performance across hedge funds. Our approach allows
for performance comparisons between models that are misspecified – a common feature given the
numerous factors that drive hedge fund returns. The empirical results show that the standard mod-
els used in previous work omit similar factors because they (i) perform exactly like the CAPM, and
(ii) produce large and positive alphas. In contrast, we observe a large and statistically significant
decrease in performance with a new model formed with alternative factors that capture variance,
correlation, liquidity, betting-against-beta, carry, and time-series momentum strategies. Overall,
the results suggest that the average returns of hedge funds are largely explained by mechanical
trading strategies.
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1. Introduction

Over the past three decades, the growth of the hedge fund industry has been outstanding. Its

total size has increased from approximately $40 billion in 1990 to close to $3 trillion at the end of

2016 (see Getmansky, Lee, and Lo, 2015). This strong demand from investors such as high-net-

worth individuals and pension funds reflects the widely held view that hedge funds deliver high

risk-adjusted returns, also called alphas. This view is supported by the arguments that hedge fund

managers are more sophisticated, less constrained, and more incentivized to perform than mutual

fund managers. Consistent with these arguments, the previous literature documents a strong and

positive hedge fund performance—for instance, Kosowski, Naik, and Teo (2007) find a cross-

sectional average alpha of 5% per year using the popular model of Fung and Hsieh (2004).1

One concern with such a high level of performance is that it is too good to be true. As discussed

by Lhabitant (2007) and Pedersen (2015), hedge funds follow complex investment strategies across

multiple countries and asset classes. This complexity suggests that all hedge fund models are

misspecified as they fail to include all the factors required to form an appropriate benchmark

(e.g., Bollen, 2013). As a result, the estimated performance is likely to be inflated – to the extent

that hedge funds load on “hidden” factors to boost average returns, their estimated alphas are

contaminated by the return premia associated with such factors.

Model misspecification calls for an evaluation of performance across multiple models. This

comparison analysis is important for several reasons. First, it describes how performance varies

across models. In particular, it evaluates the importance of using models that are more complex

than the CAPM – a choice commonly made in the hedge fund literature (see Getmansky, Lee, and

Lo, 2015). Second, it is likely to provide a sharper measurement of the true performance delivered

1A non-exhaustive list of papers that document a positive hedge fund performance includes Ackermann, McEnally,
and Ravenscraft (1999), Capocci and Hübner (2004), Buraschi, Kosowski, and Trojani (2014), Diez de los Rios and
Garcia (2010), Getmansky, Lee, and Lo (2015), Liang (1999). More recently, Chen, Cliff, and Zhao (2017) estimate
the entire alpha distribution and find that only 9% of the hedge funds exhibit negative alphas – a number that is
substantially lower than the one documented for mutual funds (see Barras, Scaillet, and Wermers, 2010; Harvey and
Liu, 2018).
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by hedge funds. Because existing models include different sets of factors, some are likely to

produce alphas that are less affected by omitted factors. Finally, comparing models allows us to

examine the marginal contribution of different hedge fund factors. This information is useful to

construct future models that are less prone to misspecification.

In this paper, we develop a novel approach for evaluating hedge fund performance with mul-

tiple models. This approach has three distinguishing features. First, it explicitly accounts for the

possibility that the different models are misspecified. Second, it provides an estimation of the

entire alpha distribution to capture the suspected large heterogeneity in hedge fund performance.

The estimation procedure is simple – it uses as only inputs the estimated fund alphas to compute

several cross-sectional characteristics including the moments, the proportion of funds with posi-

tive alphas, and the quantiles in the tails of the distribution. Third, it comes with a full-fledged

asymptotic theory which determines the properties of each estimated characteristic as the number

of observations T and the number of funds n grow large. This theoretical framework allows us to

formally compare performance across models.

On the theory side, we show that misspecification largely changes the properties of the esti-

mated alpha distribution. We document two main changes compared to the correctly-specified case

examined by Barras, Gagliardini, and Scaillet (2020). First, the estimated characteristics are less

precisely estimated because they converge at a rate equal to
√
T instead of

√
n. The convergence

rate is therefore significantly slower because we have thousands of funds, but only a few hundred

of observations (i.e., n is much larger than T ). This result seems surprising because the charac-

teristics are all computed as cross-sectional averages (i.e., we sum across funds, not over time).

Second, the estimated characteristics do not require an error-in-variable (EIV) bias adjustment,

even though they are computed with estimated alphas (instead of the true values). Intuitively, both

differences arise because the estimated characteristics ultimately depend on the omitted factors.

This dependence generates a larger estimation variance that dwarfs the EIV bias in magnitude,

making any adjustment unnecessary.

2
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We apply our new approach to the monthly returns of more than 13,000 hedge funds collected

from five different data providers (BarclayHedge, Eurekahedge, HFR, Morningstar, and TASS)

over the period 1994–2016 (276 observations). Following the classification of Joenväärä, Kaup-

pila, Kosowski, and Tolonen (2019), we sort all funds into three broad hedge fund categories: (i)

equity funds (long-short, market neutral), (ii) macro funds (global macro, CTA funds), and (iii) ar-

bitrage funds (relative value, event-driven). Using this combined database, we begin our empirical

analysis by measuring the performance of individual funds using 7 standard models in previous

work: (i) the CAPM, (ii) the 3-factor model of Fama and French (1993), (iii) the 3-factor model

of Asness, Moskowitz, and Pedersen (2013), (iv) the 4-factor model of Carhart (1997), (v) the 5-

factor models of Fama and French (2015), (vi) the 6-factor model of Hasanhodzic and Lo (2007),

and (vii) the 7-factor model of Fung and Hsieh (2004).

We uncover a striking similarity in performance across all standard models. This similarity ex-

tends beyond the average to all the characteristics of the alpha distribution (variance, proportion,

quantiles). Our formal comparison tests confirm that the standard models produce the same perfor-

mance evaluation. For instance, none of the estimated pairwise differences in mean is significant

at the 1%-level. Consistent with the previous literature, we also find that the hedge fund perfor-

mance measured with the standard models is economically large – The alpha is around 2.50% per

year on average and is positive for more than 65% of the funds in the population.

We then show that a plausible explanation for the above results is misspecification. We find

that the average R2 ranges between 20% and 30% across the different models, leaving plenty of

room for omitted factors. Consistent with this intuition, the diagnostic criterion of Gagliardini,

Ossola, and Scaillet (2019) concludes that the fund residuals are strongly correlated because they

all depend on common omitted factors. These results provide a motivation for examining a broader

set of hedge fund factors – a point forcefully made by the recent paper by Joenväärä, Kauppila,

Kosowski, and Tolonen (2019) which highlights “the need for an updated benchmark model that

reflects the post–2004 literature”.

3

Electronic copy available at: https://ssrn.com/abstract=3661751



To address this issue, we consider a set of 13 alternative factors examined in the recent asset

pricing literature. These factors are easily interpretable as the excess returns of mechanical trading

strategies that hedge funds can potentially follow. Specifically, we include: (i) the correlation

and variance factors inferred from the prices of equity options (Buraschi, Kosowski, and Trojani,

2014), (ii) the market liquidity factor of Pástor and Stambaugh (2003), (iii) the betting-against-

beta (BAB) factor of Frazzini and Pedersen (2014), (iv) a set of carry strategies applied to multiple

asset classes (Koijen, Moskowitz, Pedersen, and Vrugt, 2018), and (v) a set of time-series (TS)

momentum strategies applied to multiple asset classes (Moskowitz, Ooi, and Pedersen, 2012).2

Our analysis reveals several insights about the exposures of hedge funds to these alternative

factors. First, we find that the majority of the funds exhibit positive betas on all factors except

one (currency carry). Therefore, this finding supports the view that hedge funds load on “hidden”

factors to increase their average returns. Second, we find that negative-alpha funds tend to have

higher betas – possibly because they want to hide their lack of skill by boosting their average

returns. Finally, we find little evidence that hedge funds take correlated exposures across factors.

This implies that individual funds do not take advantage of the diversification benefits that arise

from the low correlation between the different trading strategies.

Consistent with economic intuition, the three hedge fund categories are sensitive to different

trading strategies. The returns of equity funds vary with unexpected changes in correlation and

variance, consistent with the idea that such changes limit the effectiveness of their hedging strate-

gies (Buraschi, Kosowski, and Trojani, 2014). Equity funds also load on TS momentum which

suggest that they follow this strategy to determine their overall allocation across international eq-

uity markets. Turning to macro funds, we find that carry and TS momentum play a central role –

macro funds earn a large return premium from these strategies in the fixed income and commodity

markets. Finally, arbitrage funds are primarily exposed to variance risk. This exposure likely arises

2As explained by Moskowitz, Ooi, and Pedersen (2012), TS momentum favors assets with high returns relative to
their own average. Therefore, it differs from traditional momentum which favors assets with high returns relative to
the average across the other assets (see Jegadeesh and Titman, 1993).

4
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because these funds commonly use option-based strategies – classic examples involve mortgage

and volatility arbitrage in the fixed-income market (see Duarte, Longstaff, and Yu, 2006).

We conclude our empirical analysis by proposing a new model for evaluating hedge fund

performance. We construct a seven-factor model that includes the market, correlation, variance,

liquidity, BAB, global carry, and global TS momentum factors. We find that this new model

dramatically reduces the overall performance of the hedge fund industry. The average alpha turns

negative at -0.07% per year, which represents a statistically significant reduction of 2.86% relative

the Fung-Hsieh model. Similarly, the proportion of positive-alpha funds decreases sharply from

69.00% to 51.85%. In addition, the new model produces a significantly fatter left tail as it controls

for the aggressive exposures that poorly performing funds take on the alternative factors. The

10%-quantile is equal to -11.23% per year versus -6.65% with the Fung-Hsieh model. All these

results hold across multiple investment categories and subperiods. Overall, the empirical evidence

suggests that the seemingly strong performance of hedge funds can be largely explained by a set

of mechanical trading strategies.

The remainder of the paper is as follows. Section 2 presents our framework for evaluating

hedge fund performance. Section 3 describes our novel estimation approach. Section 4 presents

the hedge fund dataset and factors. Section 5 contains the empirical analysis, and Section 6 con-

cludes. The appendix provides additional information regarding the methodology, the data, and

the empirical results.

2. Hedge Fund Performance and Model Misspecification

2.1. Hedge Fund Performance

2.1.1. The Benefits of Performance Evaluation

The objective of this paper is to evaluate the performance of individual hedge funds. In other

words, we examine whether the hedge fund industry provides investors with superior returns net

of fees and trading costs or, more simply, positive alphas. Our framework exclusively focuses on

5

Electronic copy available at: https://ssrn.com/abstract=3661751



performance and not skill. Whereas the two notions are commonly used interchangeably, they

differ in important ways – a point forcefully made by Berk and van Binsbergen (2015). Broadly

speaking, skill is defined from the viewpoint of funds, i.e., it measures whether hedge funds have

unique investment skills that allow them to extract value from capital markets. In contrast, perfor-

mance is defined from the viewpoint of investors, i.e., it measures whether the value created by the

funds, if any, is passed on to them.

Performance evaluation provides a separation between the alpha and beta components of hedge

fund returns. The alpha captures the benefits of active management – investing in a positive alpha

fund improves the risk-return trade-off of the portfolio (Treynor and Fisher, 1973). The beta

component captures the fund’s exposure to common hedge fund factors and allows the investor to

manage the overall risk of the portfolio.

Measuring performance is particularly important for hedge funds for several reasons. First,

there is a commonly held view that hedge funds achieve positive returns because they load on

“hidden” sources of risk orthogonal to traditional equity factors. A proper performance analysis

can determine how many funds produce negative alphas and charge excessive fees to their in-

vestors. Second, the performance analysis allows for an investor-specific interpretation of the beta

component of hedge fund returns. As noted by Cochrane (2013) and Pedersen (2015), some hedge

fund trading strategies are not based on superior information but require technical knowledge.

For instance, implementing a momentum strategy requires trading skills to mitigate the impact of

transaction costs. The hedge fund investor can isolate the trading strategies that she finds harder

to replicate, and attribute a positive alpha to hedge funds if they are able to implement them at a

lower cost.

6
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2.1.2. Measuring Performance

The basic idea for measuring performance is straightforward. For each fund i in the population,

we measure its performance using the net alpha α∗i :

α∗i = E[ri,t]− E[rBi,t] = E[ri,t]− β∗′i E[ft] = E[ri,t]− β∗′i λ , (1)

where ri,t is the fund excess return net of trading costs and fees, and rBi,t is the excess return of the

benchmark portfolio assigned to fund i. The benchmark is defined as a linear combination of a

set of mechanical trading strategies whose mean vector E[ft] is equal to the average excess return

vector λ since the factors are tradable. We define each strategy such that its return premium is

positive (i.e., λ > 0). The positive premia associated with these strategies could be a compensation

for bearing systematic risk, or the outcome of imperfect risk sharing driven by segmentation or

behavioral biases. In this paper, we remain agnostic on this issue – our objective is simply to avoid

giving credit to the fund for following mechanical strategies that can be directly implemented by

investors.

If we know the correct model, we can estimate the alpha of each fund from the following

time-series regression:

ri,t = α∗i + β∗′i ft + ε∗i,t , (2)

where ε∗i,t denotes the fund residual term. Equation (2) is interpreted as a random coefficient model

(e.g., Hsiao, 2003) in which the fund alpha α∗i is not a fixed parameter, but a random realization

from a continuum of funds. Under this sampling scheme, we can invoke cross-sectional limits to

infer the entire cross-sectional alpha distribution and its characteristics such as the mean, variance,

and quantiles (see Gagliardini, Ossola, and Scaillet, 2016; Barras, Gagliardini, and Scaillet, 2020).

7
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2.2. Model Misspecification

2.2.1. The Impact of Model Misspecification

In practice, measuring hedge fund performance is challenging because of model misspecifi-

cation. This issue arises because hedge funds follow a wide range of strategies. They invest in

many asset classes (equities, bonds, and derivatives) and trade in both developed and emerging

markets (e.g. Lhabitant, 2007; Pedersen, 2015). They also engage in dynamic trading strategies

which capture the time-variation in betas due to changes in economic and leverage conditions (see

Ang, Gorovyy, and van Inwegen, 2011; Patton and Ramadorai, 2013).3 As a result, any model

used for benchmarking hedge fund performance is likely to be misspecified as it only captures a

limited number of trading strategies.

To elaborate, suppose that instead of using the correct model in Equation (2), we work with

a misspecified model that only includes the factors fI,t, but omits the factors fO,t (with ft =

(f ′I,t, f
′
O,t)

′):

ri,t = αi + β′ifI,t + εi,t . (3)

The fund alpha αi obtained with the misspecified model in Equation (3) typically differs from the

true alpha α∗i . To see this point, we can write the omitted factors as: fO,t = αO + ΨO,IfI,t + uO,t,

where ΨO,I is the matrix of slope coefficients, uO,t is the vector of factor residuals, and αO is the

vector of factor alphas – that is, the vector of return premia of the omitted factors left unexplained

by the included factors: αO = λO − ΨO,IλI . Replacing λ with (λ′I , λ
′
O)′ and β∗i with (β′i,I , β

′
i,O)′

in Equation (2), we can write the average return as E[ri,t] = α∗i + β∗′i,IλI + β∗′i,OλO = αi + β′i,IλI .

3For instance, suppose that fund i changes its allocation to the equity market linearly based on current economic
conditions measured by the demeaned variable zt−1. In this case, the market beta equals βi,m,t−1 = β∗i,m,0 +

β∗i,m,1zt−1, and the correct benchmark is given by rBi,t = β∗′i ft = [β∗i,m,0, β
∗
i,m,1][rm,t, zt−1rm,t]

′, where rm,t is the
excess market return, and zt−1rm,t is the excess return of the dynamic strategy driven by the scaled factor zt−1rm,t

(Cochrane, 2005).

8
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Noting that βi,I = β∗i,I + Ψ′O,Iβ
∗
i,O, we obtain:

αi = α∗i + β∗′i,O[λO −ΨO,IλI ] = α∗i + β∗′i,OαO. (4)

Equation (4) reveals that αi is informative about the true alpha α∗i . However, this information is

noisy because αi is also impacted by the omitted factor component β∗′i,OαO.4

2.2.2. Comparison of Misspecified Models

To mitigate the impact of misspecification, we measure hedge fund performance across mul-

tiple models. This comparison analysis is important for several reasons. First, it describes how

hedge fund performance varies across models. Therefore. it sheds light on the importance of

choosing models that are significantly more complex than the CAPM – a choice commonly made

in the hedge fund literature.5 Second, it sharpens the estimation of hedge fund performance. Be-

cause existing models include different sets of factors, some are likely to do a better job at reducing

the omitted factor component in Equation (4). Finally, this analysis determines the economic im-

portance of the different factors. Focusing on the marginal contribution of each factor is useful to

construct future models that are less prone to misspecification.

Our comparison analysis is based on the entire cross-sectional alpha distribution – in particular,

its mean and variance. The mean is informative about the overall performance of the hedge fund

industry, whereas the variance captures the potentially large performance dispersion across funds.

4If the factors are uncorrelated (Ψk
O,I = 0), Equation (4) becomes: αi = α∗i + β∗′i,OλO, where the impact of each

omitted factor is captured by its return premium – a quantity that does not depend on the specific factors fI,t included
in the misspecified model (contrary to αO). This assumption is largely consistent with the data because hedge funds
factors tend to be weakly correlated (as shown in Table III).

5See Getmansky, Lee, and Lo (2015) and Agarwal, Mullally, and Naik (2015) for a review of hedge fund models
that typically include a large number of factors across multiple asset classes.

9
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For each misspecified model, we can use Equation (4) to write these two moments as:

E[αi] = E[α∗i ] + E[β∗i,O]′αO , (5)

V [αi] = V [α∗i ] + α′OΣβ
∗
i,O
αO + 2α′OCov[β∗i,O, α

∗
i ] , (6)

where E[α∗i ] and V [α∗i ] are the cross-sectional mean and variance of the true alpha, E[β∗i,O] and

Σβ
∗
i,O

are the cross-sectional mean vector and covariance matrix of the betas on the omitted factor,

and Cov[β∗i,O, α
∗
i ] denotes the vector of covariances between β∗i,O and α∗i . Consistent with our

discussion of Equation (2), we assume that the return premium associated with each omitted factor

is positive (i.e., αO > 0).

Equations (5) and (6) provide several insights. If hedge funds load positively on the factors ft

to boost their returns, we expect the vector E[β∗i,O] to be positive. In this case, using a misspec-

ified model overestimates the true hedge fund performance (i.e., E[αi] > E[α∗i ]). A comparison

analysis allows us to examine when E[αi] seem implausibly large, and how it decreases when we

increase the number of factors.

Contrary to the mean, the variance obtained with a misspecified model is not necessarily lower

than the true variance. On the one hand, V [αi] increases because αi absorbs the cross-sectional

variation in the fund beta associated with each omitted factor j (α2
j,OV [β∗i,j,O] > 0). On the other

hand, V [αi] could decrease if the fund beta on the omitted factor j is (i) negatively cross-correlated

with the beta of another omitted factor j′ (αj,OCov[β∗i,j,O, β
∗
i,j
′
,O

]αj′,O < 0), or (ii) negatively

correlated with the true alpha (αj,OCov[β∗i,j,O, α
∗
i ] < 0).6

6For instance, we would have a negative covariance between β∗i,j,O and α∗i if some funds hide their lack of skill
by loading aggressively on the factor j.

10
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3. Methodology

3.1. Overview of the Estimation Approach

We now describe our new approach for estimating hedge fund performance across models.

Our approach exhibits two main features. First, it explicitly allows each model to be misspecified.

This feature is motivated by our previous analysis that any model is likely to omit some relevant

factors that drive hedge fund returns. As we show below, accounting for model misspecification

dramatically changes the statistical inference on performance evaluation.

Second, our approach provides a unified framework for estimating a large set of characteristics

that determine the shape of the alpha distribution. These include: (i) the centered moments (e.g.,

mean, variance), (ii) the proportion of funds with alphas below a given threshold a (e.g., a = 0)

inferred from the cumulative distribution function (cdf), and (iii) the quantile at a given percentile

level u (e.g., u = 10%). For each estimated characteristic, we derive its asymptotic distribution as

the numbers of funds n and return observations T grow large (simultaneous double asymptotics

with n and T →∞). We can, therefore, conduct a proper statistical inference to formally evaluate

and compare the performance obtained with different models.

3.2. Estimation of the Fund Alpha

We consider a set of K misspecified models. Each model k (k = 1, ..., K) includes the factors

fkI,t, but omits the factors fkO,t (with ft = (fk′I,t, f
k′
O,t)

′). For each model k, we evaluate performance

using as only inputs the estimated alphas of all funds in the population. To this end, we run the

time-series regression for each fund i (i = 1, ..., n) as shown in Equation (3). The OLS vector of

coefficients is given by

γ̂i = Q̂−1
x,i

1

Ti

∑
t

Ii,txtri,t , (7)

where Ii,t is an indicator variable equal to one if ri,t is observable (and zero otherwise), Ti =∑
t Ii,t, xt = (1, f ′I,t)

′, and Q̂x,i = 1
Ti

∑
t Ii,txtx

′
t. To lighten notation, we do not superscript γ̂i,

fI,t and xt by k.
11
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The panel of hedge fund returns is unbalanced which implies that the sample size Ti can be very

small for some funds. In this case, the inversion of Q̂x,i is numerically unstable and yields unreli-

able estimates of γ̂i. To address this issue, we follow Barras, Gagliardini, and Scaillet (2020) and

introduce a formal fund selection rule 1χi equal to one if the following two conditions are met (and

zero otherwise): 1χi = 1
{

CNi ≤ χ1,T , τi,T ≤ χ2,T

}
, where CNi =

√
eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)
denotes the condition number of Q̂x,i, τi,T = T/Ti, and χ1,T , χ2,T denote the two threshold values.

The first condition CNi ≤ χ1,T excludes funds for which the time series regression is poorly

conditioned, i.e., a large value of CNi indicates multicollinearity problems and ill-conditioning

(e.g., Belsley, Kuh, and Welsch, 2004). The second condition τi,T ≤ χ2,T excludes funds for which

the sample size is too small. Both thresholds χ1,T and χ2,T increase with the sample size T – with

more return observations, the fund coefficients are estimated with greater accuracy which allows

for a less stringent selection rule. We denote the total number of funds that satisfy this selection

rule by nχ =
∑n

i=1 1
χ
i .

3.3. Statistical Inference under each Model

3.3.1. The Moments

We begin our presentation with the estimation of the moments of the alpha distribution. We

denote by Mj each centered moment (j = 1, 2, ...), and by M̂j its corresponding estimator. For in-

stance, we have for the mean and the standard deviation: M1 = E[αi], M2 = (E[α2
i ]−E[αi]

2)1/2,

and M̂1 = 1
nχ

∑
i α̂i1

χ
i , M̂2 =

(
1
nχ

∑
i 1

χ
i α̂

2
i − M̂2

1

)1/2

. The following proposition derives the

asympotic distribution of each estimated moment M̂j under the misspecified model k.

Proposition 1. As n, T →∞, such that T/n = o(1),

√
T
(
M̂j −Mj

)
⇒ N

(
0, VMj

)
, (8)

where VMj
=
(
η′Mj
⊗ E ′1Q−1

x

)
Ωux

(
ηMj
⊗Q−1

x E1

)
, and ηMj

= E

[(
∂Mj

∂E[g])

)′
∂g
∂αi
β∗i,O

]
, E[g]

is the vector of uncentered moments with g = (αi, ..., α
j
i )
′, E1 = (1, 0′)′, Qx = E[xtx

′
t] and

12
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Ωux = lim
T→∞

V

[
1√
T

∑
t

uO,t ⊗ xt

]
.

Proof. See the Appendix.

3.3.2. The Proportion and Quantile

Next, we turn to the analysis of the proportion and quantile. The proportion of funds with

alphas below a is measured from the cumulative distribution function (cdf) and denoted by P (a) =

P [αi ≤ a]. The quantile at a given percentile u is given by the inverse function: Q(u) = P−1(u).

Their estimators are given by P̂ (a) = 1
nχ

∑
i 1{α̂i ≤ a}1χi and Q̂(u) = P̂−1(u). The following

proposition derives the asympotic distributions of the estimated proportion P̂ (a) and quantile Q̂(u)

under the misspecified model k.

Proposition 2. As n, T →∞, such that T/n = o(1),

√
T
(
P̂ (a)− P (a)

)
⇒ N (0, VP (a)) , (9)

√
T
(
Q̂(u)−Q(u)

)
⇒ N

(
0, VQ(u)

)
, (10)

where VP (a) =
(
ηP (a)′ ⊗ E ′1Q−1

x

)
Ωux

(
ηP (a)⊗Q−1

x E1

)
, ηP (a) = E[β∗O,i|αi = a]φ(a), φ(a) is

the alpha distribution (i.e., the probability distribution function (pdf) evaluated at a), and VQ(u) =
VP (Q(u))

φ(Q(u))
2 .

Proof. See the Appendix.

3.3.3. Interpretation of the Results

Propositions 1 and 2 show that the estimated characteristics of the alpha distribution (moments,

proportion, quantile) all share similar properties. They are asymptotically normally distributed,

which facilitates the construction of confidence intervals. They are also consistent, i.e., they con-

verge towards the parameter values as n and T grow large. Put differently, we can infer the alpha

distribution obtained with model k even though we do not observe the fund alphas themselves, but

only their estimated values (α̂i instead of αi). Finally, all estimated characteristics converge at a

rate equal to the standard parametric rate
√
T . This last result is a priori surprising because the
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estimated characteristics are all computed as cross-sectional averages (i.e., we sum across n, not

across T ).

These properties depart significantly from those derived by Barras, Gagliardini, and Scaillet

(2020) for the correctly-specified case. First, the estimated characteristics have a smaller variance.

Their convergence rate is equal to
√
n, which is much faster than

√
T with a total population of

several thousand funds. Second, the estimated characteristics must be adjusted for the error-in-

variable (EIV) bias which has order 1/T . This bias arises because we use the estimated alphas

as inputs (α̂i instead of αi). Strikingly, the EIV bias adjustment is unnecessary when the model

is misspecified. Therefore, Propositions 1 and 2 provide a theoretical justification to the common

practice of computing summary statistics based on estimated coefficients (e.g., boxplots), but only

if the model is misspecified.

These sharp difference arise from the properties of the residual term. The residuals ε∗i,t (i =

1, ..., n) in the correctly-specified case (Equation (2)) are weakly correlated because the common

factors exhaust the cross-sectional dependence across hedge funds returns. In contrast, the resid-

uals εi,t (i = 1, ..., n) in the misspecified case (Equation (3)) are strongly correlated across funds

because they include the omitted factors via the term uO,t, i.e., we have εi,t = ε∗i,t + β∗′O,iuO,t.

Therefore, the estimation error on the coefficients γ̂i for each fund involves the time-series aver-

age ε̄i = ε̄i
∗ + β∗′i,OūO, where ūO is of order 1/

√
T and does not vanish when we average across

funds (even when n grows large). This term explains why all the estimated characteristics of the

alpha distribution have a slower convergence rate equal to
√
T . In addition, they do not require the

EIV bias adjustment because the variance term dwarfs the EIV bias in magnitude.

3.4. Formal Comparison across Models

3.4.1. The Moments

We now extend the previous analysis to formally compare the moments of the alpha distribu-

tion under two different models. To this end, we denote by ∆Mj the difference between the jth

centered moments obtained with models k and l, and by ∆M̄j the corresponding estimator, where
14
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∆Mj = Mk
j −M l

j and ∆M̂j = M̂k
j − M̂ l

j .
7 The following proposition derives the asymptotic

distribution of the estimated moment difference ∆M̂j under the misspecified models k and l.

Proposition 3. As n, T →∞, such that T/n = o(1),

√
T
(

∆M̂j −∆M j

)
⇒ N

(
0, V∆Mj

)
, (11)

where V∆Mj
= V

M
k
j
+V

M
l
j
−2Cov[M̂k

j , M̂
l
j], VMk

j
, V

M
l
j

are given in Proposition 1,Cov[M̂k
j , M̂

l
j] =(

η
m
k′
j
⊗ E ′1Q−1

x
k

)
Ωkl
ux

(
η
m
l
j
⊗Q−1

x
l E1

)
, and Ωkl

ux = lim
T→∞

Cov
[

1√
T

∑
t u

k
O,t ⊗ xkt , 1√

T

∑
t u

l
O,t ⊗ xlt

]
.

Proof. See the Appendix.

3.4.2. The Proportion and Quantile

Repeating the above procedure for models k and l, we denote by ∆P (a) = P k(a) − P l(a)

the difference between the proportions at the threshold a, and by ∆Q(u) = Qk(u) − Ql(u) the

difference between the quantiles at the percentile u. We also denote by ∆P̄ (a) and ∆Q̄(u) their

corresponding estimators, where ∆P̂ (a) = P̂ k(a)− P̂ l(a) and ∆Q̂(u) = Q̂k(u)− Q̂l(u).

The following proposition derives the asympotic distribution of the estimated proportion and

quantile differences ∆P̂ (a) and ∆Q̂(u) under the misspecified models k and l.

Proposition 4. As n, T →∞, such that T/n = o(1),

√
T
(

∆P̂ (a)−∆P (a)
)
⇒ N

(
0, V∆P (a)

)
, (12)

√
T
(

∆Q̂(u)−∆Q(u)
)
⇒ N

(
0, V∆Q(u)

)
, (13)

where V∆P (a) = V
P
k
(a)

+V
P
l
(a)
−2Cov[P̂ k(a), P̂ l(a)], V∆Q(u) = V

Q
k
(u)

+V
Q
l
(u)
−2Cov[Q̂k(u), Q̂l(u)],

V
P
k
(a)

, V
P
l
(a)

, V
Q
k
(u)

, V
Q
l
(u)

are given in Proposition 2. The two covariance terms are given

by Cov[P̂ k(a), P̂ l(a)] =
(
ηk′P (a)⊗ E ′1Q−1

x
k

)
Ωkl
ux

(
ηlP (a)⊗Q−1

x
l E1

)
, and Cov[Q̂k(u), Q̂l(u)] =

Cov[P̂ k(Q̂k(u)), P̂ l(Q̂l(u)))]/(φk(Q̂k(u))φl(Q̂l(u))).

Proof. See the Appendix.

7We assume in Proposition 3 that the two models are misspecified. If one model is correctly specified, the conver-
gence rate of the estimated moment equals

√
n (see Barras, Gagliardini, and Scaillet (2020)), which is much faster than

the rate of
√
T under the misspecified model. In this case, the asymptotic distribution of ∆M̂j is solely driven by the

estimated moment under the misspecified model (i.e., we can treat the estimated moment under the correctly-specified
model as known).
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3.4.3. Hypothesis Tests

From Proposition 3, we can formally test the null hypothesis that the jth moments Mk
j and M l

j

under models k and j are equal:

H0 : ∆Mj = 0 . (14)

Similarly, we can use Proposition 4 to test the null hypothesis that the proportion or the quantile

remains unchanged across the two models:

H0 : ∆P (a) = 0 ,

H0 : ∆Q(u) = 0 .

(15)

The testing procedure in Equations (14) and (15) is straightforward. The estimated differences in

characteristics are all normally distributed, which allows for a simple computation of the rejection

thresholds. Moreover, this procedure applies to the comparison of both nested and non-nested

models. In contrast, Kan and Robotti (2011) and Kan, Robotti, and Shanken (2013) show that

comparison tests of the pricing errors of misspecified models depend on whether they are nested

or not. This difference arises because our asymptotic framework allows for n to grow large (instead

of working with a fixed n). Second, we compare different quantities, i.e., our tests are based on

the difference in the alpha distribution (instead of aggregate pricing errors such as the Hansen-

Jagannathan distance and cross-sectional R2).

3.5. Estimation of the Asymptotic Variance

To conduct statistical inference both within and across models, we need to estimate the asymp-

totic variance of the different estimators. The main difficulty is that each variance term in Propo-

sitions 1–4 depend on the omitted factors uO,t and their loadings β∗i,O, which are not directly

observable. To address this issue, we derive a consistent estimator of V based on the observed

residuals of each model ε̂i,t = ri,t − x′tγ̂i (i = 1, ..., n).
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To simplify the exposition, we consider the case where εi,t is independent over time.8 We

consider the following generic expressions for (i) the variance of each estimated characteristic

(i.e., M̂j, P̂ (a), Q̂(u)), and (ii) the variance of each estimated difference in characteristics between

models k and l (i.e., ∆M̂j,∆P̂ (a),∆Q̂(u)):

V̂ =
1

n2T

∑
i

∑
j

∑
t

1χi τi,T Ii,t1
χ
j τj,T Ij,tâi,tâ

′
j,t , (16)

where the term âi,t depend on each estimator. For instance, we have âi,t = E ′1Q̂
−1
x for the cross-

sectional mean M1. The appendix reports the expressions of âi,t for the other characteristics, and

shows that V̂ and V̂∆ are consistent estimators of V and V∆ as n and T grow large.

4. Data Description

4.1. Hedge Fund Database

We evaluate hedge fund performance using the monthly net-of-fee USD returns of individual

funds over the period 1994-2016 (276 observations). We take several steps to mitigate the various

sources of bias in the hedge fund databases. First, we create an exhaustive universe of funds

by aggregating five different data providers (BarclayHedge, Eurekahedge, HFR, Morningstar,

and TASS). Because under-performing funds typically report to only one provider, combining

databases offers a better representation of these funds and thus reduces the upward selection bias

in individual databases (Joenväärä, Kauppila, Kosowski, and Tolonen, 2019). Second, we address

survivorship bias by including the dead funds from the graveyard hedge fund databases available

from January 1994 onward. Third, we follow previous studies and delete the first 12 months of

data to mitigate the backfill bias when funds start reporting to databases.9 The appendix provides

8This assumption holds if the residual ε∗i,t and the omitted factors fO,t are independent over time. When this is
not the case, we simply need to modify the variance estimator by including weighted cross-terms at different dates
(Newey and West, 1987).

9A more stringent approach examined in the appendix is to eliminate all the return observations before the fund
listing date to the database. As noted by Fung and Hsieh (2009), this approach potentially discards important infor-
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more detail on the construction of the hedge fund dataset.

We evaluate the performance of several hedge fund strategies across three broad hedge fund

categories: equity, macro, and arbitrage. This classification facilitates the identification of rele-

vant factors within each category.10 The first category (equity) includes long-short and market

neutral funds. The second category (macro) includes global macro funds and managed futures

funds/commodity trading advisors (for simplicity, both are referred to as CTAs). Finally, the third

category (arbitrage) includes relative value and event-driven funds. The mapping of strategies

across the different databases builds on the recent paper by Joenväärä, Kauppila, Kosowski, and

Tolonen (2019) and is described in the appendix.

Table I reports summary statistics for the consolidated hedge fund database. For each cate-

gory/style, we construct the excess return of an equally-weighted portfolio that includes all exist-

ing funds at the start of each month. We then report the average number of funds per month, the

mean, standard deviation (both annualized), skewness, kurtosis, and quantiles at 10% and 90%.

Overall, the results are in line with those documented by Getmansky, Lee, and Lo (2015) over a

similar period (1996–2014). For instance, they find that the mean-volatility pair equals 4.7%-3.3%

for market neutral funds and 6.8%-5.9% for event-driven funds, versus 4.1%-3.3% and 6.7%-6.2%

in Table I. Consistent with intuition, we find that long-short equity and CTA funds exhibit higher

levels of volatility as they typically take more directional positions.

To conduct our fund-level performance analysis, we apply the two selection rules described in

Section 3.2. First, we fix the minimum number of return observations equal to 36 (τi,T ≤ 276/36)

to keep a large number of funds. Second, we follow Barras, Gagliardini, and Scaillet (2020)

and impose that the condition number of the matrix of regressors Q̂x,i is below 15 (CNi ≤ 15).

mation about the fund performance by eliminating all the early years of returns (in some cases, more than 5 years) –
a period during which performance is typically quite strong (Aggarwal and Jorion, 2010). In addition, the listing date
is not provided by all databases.

10For this reason, we initially exclude multi-strategy funds and funds of funds. These two categories are discussed
later in Section 5.3.
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Combining these two rules, we obtain a total number of 8,665 funds over our sample period.11

[Insert Table I about here.]

4.2. Hedge Fund Factors

Building on previous work, we collect the return time-series of 28 economically-motivated

factors. These factors can be easily interpreted as they capture the excess return of mechanical

strategies that hedge funds potentially follow. As such, they depart from purely statistical hedge

fund factors extracted from a PCA analysis (e.g., Fung and Hsieh, 2001; Billio, Getmansky, Lo,

and Pelizzon, 2012). Combining these factors, we then evaluate hedge fund performance across

multiple models.

Table II provides the list of the 28 hedge fund factors, which are discussed in more detail in

Section 5. Group 1 includes the set of US equity factors which include the market, size, value,

momentum, investment, and profitability factors. It also includes the liquidity factor, and the

Betting-Against-Beta (BAB) factor which captures the impact of leverage constraints. Group 2

contains strategies across the other asset classes. It includes the term and default factors for US

bonds, the excess return of commodity and currency indices, and the two global value and mo-

mentum factors applied to international equities, bonds, commodities, and currencies. Group 3

contains a set of option-based strategies. It includes the correlation and variance factors inferred

from options on the S&P 500 and its constituents, and the excess returns of three look-back option

straddles on bonds, commodities, and currencies.12 Group 4 includes the set of carry strategies

across international equities, bonds (level, slope), commodities, and currencies. Group 5 includes

the set of time-series (TS) momentum strategies across international equities, bonds, commodities,

11In our sample, the second criterion is redundant because the final population size is determined by the minimum
number of return observations.

12Contrary to the other factors, the option-based strategies are expected to deliver negative return premia because
they perform well in bad times when realized variance/correlation is high. To maintain consistency with the other
factors, we therefore multiply their returns by -1 such that the investor takes a short position in these option-based
strategies.
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and currencies. The appendix provides a detailed description of the construction and data source

for each factor.

Table II reports the summary statistics for the excess return of each factor. Consistent with

previous studies, we find that the trading strategies associated with the different factors all deliver

positive average returns (i.e., λ > 0). Therefore, any fund that loads positively on these factors

earns a positive premium. We also examine the correlation across factors. To this end, we compute

the correlations (in absolute value) for all factor pairs, and take an average both within and across

the five groups. Table III shows that the factors are weakly correlated, even within specific groups

(e.g., the average correlation equals 0.19 across time-series momentum factors). Unreported re-

sults further show that only four of the 378 pairwise correlations are above 0.6 (in absolute value).

Overall, these results imply that the factors capture distinct hedge fund trading strategies.

[Insert Tables II and III about here.]

5. Empirical Results

5.1. Performance Analysis with Standard Models

We begin our performance analysis by examining a set of standard models from the literature

on asset pricing and performance evaluation. These models are convenient for the analysis of

hedge funds because they are designed as “omnibus” models that include multiple factors across

asset classes. Therefore, they can, in principle, explain the returns of multiple hedge fund cat-

egories. In addition to the CAPM which serves as a natural reference point, we examine the

following models:

1. 3-Factor Model: This model proposed by Fama and French (1993) includes the market, size,

and value factors;

2. Asness-Moskowitz-Pedersen (AMP) Model: This three-factor model proposed by Asness,

Moskowitz, and Pedersen (2013) includes the market return and the two global value and

momentum factors (value and momentum everywhere);
20
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3. 4-Factor Model: This model proposed by Carhart (1997) adds the momentum factor to the

3-Factor model;

4. 5-Factor Model: This model propposed by Fama and French (2015) adds the investment and

profitability factors to the 3-Factor model;

5. Hasanhodzic-Lo Model: This six-factor model proposed by Hasanhodzic and Lo (2007)

includes the market and size factors, the term and default bond factors, and the excess return

of the commodity and currency indices;

6. Fung-Hsieh Model: This seven-factor model proposed by Fung and Hsieh (2004) includes

the market and size factors, the term and default bond factors, and the excess returns of the

lookback option straddles on bonds, commodities, and currencies.

For each model, we apply the approach outlined in Section 3 to estimate several characteristics

of the cross-sectional alpha distribution. We compute the annualized mean and standard deviation

(M̂1 and M̂2), the proportions of funds with negative and positive alphas (P̂ (0) and 1− P̂ (0)), and

the annualized quantiles at 10% and 90% (Q̂(0.1) and Q̂(0.9)).

The main insight from Table IV is that all the models yield the same performance evaluation.

The average alpha, which equals 2.62% per year with the CAPM, barely changes as we include

more factors. For instance, it is equal to 2.25% and 2.79% per year with the 3-factor and Fung-

Hsieh models. This result resonates with that of Getmansky, Lee, and Lo (2015) who show that a

simplified version of the Fung-Hsieh model leaves the average alpha largely unchanged. Beyond

the average, we find that the entire alpha distribution has the same dispersion and tail proper-

ties across models – that is, the standard deviation, proportions, and quantiles all remain largely

unchanged.13

[Insert Table IV about here.]

13In unreported results, we find that the strong similarity across models extends to the alpha of each individual fund.
For instance, the fund-level correlation between the CAPM alpha and the Fung-Hsieh alpha is as large as 0.94.
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These results are confirmed by our formal comparison tests. For each characteristic (average,

standard deviation, proportion, quantile), we test the null hypothesis that the estimated differ-

ence between model k and model l is equal to zero. Each row in Table V reports the estimated

differences for a given model k. Therefore, a negative value implies that model k has a lower char-

acteristic than model l. Out of the 210 comparisons, we find that only 20 of them are statistically

significant at the 10% level. This number is negligible – even if all the differences were equal to

zero, we would expect to find 21 rejections simply by luck (see Barras, Scaillet, and Wermers,

2010).14

Taken at face value, the empirical evidence implies that the performance of the hedge fund

industry is economically large. More than 65% of the funds deliver a positive alpha – a finding

that resonates with that of Chen, Cliff, and Zhao (2017) who find that 91% of the funds have an

alpha equal or superior to zero. Furthermore, some of these positive-alpha funds deliver a stellar

performance to investors – as shown by the 90%-quantile across models, the best performers

typically deliver annual alphas above 11% per year.

[Insert Table V about here.]

Alternatively, the strong performance under the standard models could simply be due to mis-

specification. To examine this issue, we first compute the adjusted R2 from the time-series regres-

sion in Equation (3). A low R2 is a sign of misspecification because it suggests the presence of

omitted factors that drive hedge fund returns.15 Second, we use the diagnostic criterion of Gagliar-

dini, Ossola, and Scaillet (2019, GOS) to detect misspecification. When a model is misspecified,

the fund residuals are strongly correlated (see Section 3.3). In this case, the GOS diagnostic cri-

14We also find that performance remains largely unchanged for each hedge fund category (equity, macro, arbitrage).
For instance, the largest difference for the mean and standard deviation is a mere 0.57% and 0.31% per year among
equity funds (see the appendix).

15Using the Fung-Hsieh model, Bollen (2013) notes that many hedge funds have a R2 close to zero. However, their
residual volatility cannot be diversified away which suggests that they all depend on the same omitted factors.
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terion is positive with probability one when n and T grow large.16 The evidence in Table IV

(Panel A) strongly suggests that the standard models are misspecified. We find that the average R2

ranges between 20% and 30%, leaving plenty of room for omitted factors. In addition, the GOS

criterion is also always positive which implies that the residuals exhibit a strong factor structure.

In the next section, we examine whether using alternative hedge fund factors potentially re-

duces the impact of misspecification. To this end, we study each hedge fund category separately

(equity, macro, and arbitrage). This approach allows us to identify a set of plausible economic

factors that potentially drive the returns within each category. In addition, it mitigates data-mining

concerns that arise if we were to evaluate a very large number of randomly formed models.

5.2. An Analysis of Alternative Hedge Fund Factors

5.2.1. Equity Funds

We begin our analysis with the equity category (long-short and market neutral funds). Equity

funds rely on discretionary or quantitative analysis to buy undervalued stocks and sell short over-

valued stocks. As a result, their returns are potentially correlated with several trading strategies.

1. Correlation and variance. Equity funds can be exposed to correlation and variance risks. As

discussed by Buraschi, Kosowski, and Trojani (2014), unexpected increases in correlation

and variance limits the funds’ ability to balance risk between their long and short positions,

and typically occur in crisis times when prime brokers tighten their funding conditions.

2. Market liquidity. Equity funds may be exposed to marketwide liquidity risk. This expo-

sure arises because equity funds commonly buy small-cap stocks and accommodate selling

pressure in the market (e.g. Pedersen, 2015, ch.3).

3. Betting-against-beta (BAB). Traditional investors face leverage constraints and thus shy

away from low-risk stocks. Equity funds can take advantage of their additional leverage

capacity to buy these stocks – a strategy captured by the BAB factor.

16The GOS criterion is described in more detail in the appendix and is applied by Chaieb, Langlois, and Scaillet
(2018) in the context of individual international stock returns.
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4. Equity carry. Equity funds invest across multiple international equity markets. To determine

their overall allocation, they may follow a carry strategy which invests in equity markets

with high dividend yields.

5. Equity TS momentum. To determine their overall allocation, equity funds may also follow

a TS momentum strategy which favors markets with high past returns relative to their own

average.

We construct an extended CAPM that includes the market return and the following factors: the

correlation and variance factors of Buraschi, Kosowski, and Trojani (2014), the traded liquidity

factor of Pástor and Stambaugh (2003), the BAB factor of Frazzini and Pedersen (2014), the equity

carry factor of Koijen, Moskowitz, Pedersen, and Vrugt (2018), and the equity TS momentum

factor of Moskowitz, Ooi, and Pedersen (2012).

Table VI (Panel A) measures the overall impact of the factors on the performance of equity

funds. A first look at the results suggests that the extended model remains misspecified. On

average, the R2 is still relatively low (33.53%), and the GOS criterion remains positive (i.e., the

fund residuals are strongly correlated). However, it achieves a sizeable reduction in the overall

performance of equity funds. The average alpha is a mere 0.36% per year (versus 2.06% for the

CAPM), and the proportion of positive-alpha funds is equal to 52.86% (versus 66.55% for the

CAPM).

An important question is whether the overall impact of the alternative factors is genuine. Be-

cause misspecification introduces estimation noise, the estimated differences may not be statisti-

cally significant even though they are economically large. Panel A shows that this is not the case

– the difference between the average alphas (-1.70%) and the proportion estimates (-13.70%) are

both significant at the 1% level.

The alternative factors also change the dispersion of the fund alphas. Whereas we might expect

the standard deviation under the extended CAPM to decrease as we remove the variation due to

the omitted factors, it actually increases from 8.19% to 10.09% per year. The extended model also
24

Electronic copy available at: https://ssrn.com/abstract=3661751



lowers the performance of the worst funds. The bottom 10% of the funds deliver alphas below

-9.13% per year (versus -6.47% under the CAPM).

Next, we examine the economic importance of the each factor in isolation. To this end, we

measure the return premium rpi,j associated with each factor as its contribution to the difference

between the fund alphas under the CAPM and the alternative model. From Equation (4), we can

write this difference as:

αCAPM
i − αCOMB

i =
6∑
j

rpi,j =
6∑
j

βCOMB
i,j αCAPM

j , (17)

where the subscript j denotes one of the factors included in the combined model, βCOMB
i,j is the

fund beta, and αCAPM
j denotes the CAPM alpha of the factor. After computing rpi,j for each fund,

we can infer its cross-sectional distribution for each factor j (j = 1, ..., 6). Table VI (Panel B)

reveals several insights. First, the majority of equity funds have a positive beta on each factor

(57.09% on average), and earn positive return premia by doing so (0.28% per year on average).

This finding supports the view that hedge funds load on non-conventional risk factors to boost their

average returns. Second, we find that the variance and TS momentum factors are the main drivers

of the average returns of equity funds – they explain 58% of the average difference between αCAPM
i

and αCOMB
i (0.99%/1.70%). Third, we observe a large heterogenity in the funds’ exposure to the

correlation, variance, and BAB factors. For instance, the BAB factor contributes little to the mean

return of equity funds (0.04% per year). However, 10% of the funds earn more than 3.17% per

year by leveraging their positions on low-risk stocks.

Looking at the fund-level correlation between return premia, we find little evidence that funds

take correlated positions across factors – on average, the correlation between rpi,j and rpi,j′ (j 6=

j′) is close to zero (-0.04). Therefore, equity funds load on the alternative factors but do not

exploit the diversification benefits that arise from their low correlation (as shown in Table III). On

the contrary, the correlation between rpi,j and αCOMB
i is equal to -0.19 on average. This negative
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correlation implies that poorly performing funds tend to load more aggressively on the different

trading strategies.

[Insert Table VI about here.]

In the appendix, we repeat the analysis for each investment style (long-short and market neutral

funds). We find that the alternative factors have a stronger impact on long-short funds – the average

difference in alphas between the two models is equal to 1.77% per year. In contrast, this difference

is a mere 1.22% for market neutral funds. This finding is consistent with the intuition that market

neutral funds have a limited exposure to systematic risk. Another striking difference between the

two subgroups is the role played by the BAB factor. On average, it is the main contributor to

the returns of market neutral funds (0.48% per year). Leveraging on low-beta stocks allows these

funds to boost their returns while maintaining a neutral exposure to the aggregate market.

5.2.2. Macro Funds

We now turn to the analysis of the macro category (global macro and CTA funds). Contrary

to equity funds, macro funds invest in multiple asset classes, and take directional bets using broad

economic and financial indicators (e.g., GDP growth, inflation). These two differences call for a

generalization of carry and TS momentum to multiple asset classes.

1. Carry. Macro funds generally favor assets that have a positive carry within each asset class

(Pedersen, 2015, ch.11) – by definition, such assets earn a positive income even if their price

do not change over time. As shown by Koijen, Moskowitz, Pedersen, and Vrugt (2018), the

concept of carry can be applied uniformly across equities, bonds (level), portfolios of long-

term minus short-term bonds (slope), commodities, and currencies.

2. TS momentum. Macro funds also exploit short-term trends in asset prices caused by be-

havioral biases, frictions, or slow moving capital (Pedersen, 2015, ch.12). Therefore, their

returns could be explained by mechanical times-series momentum strategies which invest in

assets with high past returns across equity, bond, currency, and commodity markets.
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We construct an extended version of the CAPM that includes five carry and four TS momen-

tum strategies. We use the carry factors of Koijen, Moskowitz, Pedersen, and Vrugt (2018) for

equities, bonds (level and slope), commodities, and currencies, and the TS momentum factors of

Moskowitz, Ooi, and Pedersen (2012) for equities, bonds, commodities, and currencies.

The impact of these factors on the performance of macro funds is large. Table VII (Panel A)

shows that the average CAPM alpha equals 3.32% per year with a proportion of positive-alpha

funds close to 70%. Adding carry and TS momentum, the average alpha turns negative (-0.56%),

and only a minority of funds exhibit positive alphas (45.33%). Our formal comparison analysis

reveals that the above differences are not only economically large, but statistically significant at the

1% level. The results also show that this reduction in performance come with a sizeable increase

in explanatory power (the average R2 increases from 8.45% to 20.36%).

The alternative factors also have a strong impact on the left and right tails of the alpha distribu-

tion. Under the CAPM, the best performing funds deliver alphas above 13.75% per year. However,

this seemingly stellar performance is partly driven by carry and TS momentum – accounting for

these strategies, the 90%-quantile is only equal to 10.62%. Similarly, we observe a sharp drop in

the 10%-quantile from -7.44% to -12.42%.

Except for one case (currency carry), Table VII (Panel B) shows that the majority of macro

funds are positively exposed to each alternative factor an earn a return premium of 0.43% per

year on average. We also see that TS momentum is more important than carry in explaining the

difference between the extended model and the CAPM – they explain 73% of the gap in average

alpha (2.87%/3.92%), versus 27% for carry strategies (1.11%/3.92%).

For carry, the bond strategies (level and slope) are the main contributors to the individual fund

returns. They produce both the highest average return premia – a combined 0.80% per year – and

the highest standard deviation. Turning to the TS momentum, the two most important strategies are

fixed income and currency – their combined return premium reaches 1.88% per year on average.

We also observe a strong dispersion in the funds’ exposure to the fixed income strategy. For
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instance, 10% of the funds earn a premium above 5.36% by exploiting trends in the bond market.

Similar to equity funds, we also find that the return premia are (i) weakly correlated across factors,

and (ii) negatively correlated with the alpha.

[Insert Table VII about here.]

In the appendix, we also examine the importance of the alternative factors for each investment

style (global macro and CTA funds). In both subgroups, we observe a sharp reduction in perfor-

mance relative to the CAPM. For instance, the average alpha respectively decreases by 3.03% per

year for global macro funds, and by 4.43% for CTA funds. Interestingly, the relative importance of

carry and TS momentum varies across the two subgroups. For global macro funds, the combined

return premium of the carry strategies is equal to 1.13% per year, which is similar that of the TS

momentum strategies (1.89%). On the contrary, CTA funds primarily focus on TS momentum –

the combined return premium reaches 3.61%, which explains 82% of the difference between the

average alphas between the two models (3.61%/4.43%). This finding resonates with the analysis

of Pedersen (2015, ch.12) who shows that CTA fund indices deliver negative alphas once after

controlling for TS momentum.

5.2.3. Arbitrage Funds

We finally examine the arbitrage category (relative value and event-driven). Arbitrage funds

implement convergence trades by identifying similar securities that trade at different prices. Whereas

relative value funds exploit price discrepancies in the debt market (e.g., fixed income, convertible

bond arbitrage), event-driven funds focus on corporate events such as mergers and acquisitions.

As a result, arbitrage funds may follow several trading strategies.

1. Correlation and variance. Similar to the equity category, arbitrage funds take correlation

and variance risks through their hedging strategies. In addition, several fixed-income funds

(e.g., mortgage and volatility arbitrage) follow option-based strategies which are sensitive to

unexpected changes in variance.
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2. Market liquidity. Arbitrage funds are potentially exposed to liquidity risk. This exposure

arises when they take illiquid positions in the convertible bond market, or when they absorb

the selling pressure after merger announcements (see Pedersen, 2015, ch.15 and 16).

3. Bond carry. Similar to the macro funds, arbitrage funds may also implement carry strategies.

This is particularly the case for fixed-income funds when they search for high expected

returns across bonds (Pedersen, 2015, ch.14)

We capture these strategies using an extended version of the CAPM that includes the following

factors: the correlation and variance factors of Buraschi, Kosowski, and Trojani (2014), the traded

liquidity factor of Pástor and Stambaugh (2003), and the carry factors of Koijen, Moskowitz,

Pedersen, and Vrugt (2018) applied to bonds (level and slope).

Table VIII (Panel A) shows that the alternative factors produce a lower performance among ar-

bitrage funds. However, their impact is lower than in the other categories. The difference between

the average alphas is equal to -1.41% (versus -1.70% and -3.88% for equity and macro funds).

Similarly, the proportion of positive-alpha funds decreases moderately from 71.68% to 62.28%.

Overall, these results highlight the challenge of capturing the returns of arbitrage funds as they

follow a large number of investment strategies with varying levels of complexity (see Duarte,

Longstaff, and Yu, 2006).

Panel B shows that the majority of the funds load positively on each single factor (the average

fund proportion equals 59.25%). We find that the variance factor produces the highest return

premium (0.69% per year on average). This finding is consistent with the importance of option-

based for arbitrage funds. We also see larger degree of homogeneity in the funds’ exposures to the

alternative factors. The average standard deviation in the return premium equals 2.30% per year –

a level lower than the one observed for equity funds (3.57%) and macro funds (2.72%).

[Insert Table VIII about here.]

In the appendix, we further examine the impact of the alternative factors on each investment
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style (relative value and event-driven). We observe a similar decrease in performance in both

subgroups. To illustrate, the average alpha decreases from 2.45% to 0.90% per year for relative

value funds, and from 3.50% to 2.37% for event-driven funds. The results show that the bond

carry strategies are more important for relative value funds – the combined return premium equals

0.93% on average. This is consistent with the greater activity of these funds in the fixed-income

market. We also find that event-driven funds are more exposed to liquidity risk, possibly because

they provide liquidity following merger announcements.

5.3. A New Model for Evaluating Hedge Fund Performance

Our analysis so far is useful for two reasons. First, it provides a rationale for using the set

of alternative factors proposed in the recent literature – that is, it explains why each investment

category might be more sensitive to particular factors. Second, it uncovers some commonality

across the different categories. For instance, equity and arbitrage funds are exposed to correlation,

variance, and liquidity risks, while all funds follow different types of carry strategies. This com-

monality suggests that a simple encompassing model could mitigate the impact of misspecification

and improve the evaluation of hedge fund performance.

To address this issue, we propose a new model that includes seven factors: the market return,

the correlation and variance factors of Buraschi, Kosowski, and Trojani (2014), the traded liquidity

factor of Pástor and Stambaugh (2003), the BAB factor of Frazzini and Pedersen (2014), and the

two global factors of Koijen, Moskowitz, Pedersen, and Vrugt (2018) and Moskowitz, Ooi, and

Pedersen (2012) which capture the returns of carry and TS momentum across all asset classes

(equity, bonds, commodities and currencies). We then evaluate hedge fund performance with this

new model and compare it with four standard models examined in Table X: (i) the CAPM, (ii) the

4-factor model, (iii) the 5-factor model, and (iv) the Fung-Hsieh model.

The new model produces a more conservative evaluation of hedge fund performance. Table IX

(Panel A) shows that the average alpha for the entire fund population is close to zero (-0.07% per

year). In addition, we find that only 51.85% of the funds produce positive alphas. These results
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stand in sharp contrast with those obtained with the standard models. For one, the differences

between the average alphas range between -2.24% (4-factor) and -2.86% (Fung-Hsieh) per year

and are all statistically significant at the 1% level. We also find that the new model lowers per-

formance in all three investment categories (Panels B to D). This reduction is particularly strong

among equity and macro funds, where the average alpha turns negative and the majority of the

funds deliver negative alphas to their investors.

Another insight from Table IX is the large heterogeneity in hedge fund performance. Even after

accounting for several factors that drive the average returns of hedge funds, the standard deviation

of the alpha distribution remains large at 11.54% per year. This result suggests that investors can

collect huge rewards if they are able to locate the best funds in the right tail of the distribution.

At the same time, the large dispersion in fund alphas is mostly driven by the left tail. Under the

new model, the 10%-quantile is equal to -11.23% per year. Therefore, some hedge funds vastly

overcharge their investors relative to the value they are able to generate. Interestingly, the 10%-

quantile is more than 4% higher (in absolute value) under the standard models. The reason is that

poorly performing funds load more aggressively on the alternative factors. Therefore, the negative

alphas of poorly performing funds are partly hidden because they are offset by the positive premia

associated with the omitted factors.

[Insert Table IX about here.]

Finally, we conduct a sensitivity analysis to determine whether the reduction in performance

documented in Table IX holds in other settings. First, we examine two additional investment

categories – multi-strategy funds and funds of funds. Table X (Panels A and B) confirms our

previous findings. In particular, we find that the average alphas among funds of funds is equal

to -3.48% per year, and only 24.75% of them deliver positive alphas to their investors. Second,

we divide the sample period into two subperiods of 138 monthly observations each. Over the two

subperiods (Panels C and D), the new model achieves a strong reduction in performance relative

to the standard models.
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[Insert Table X about here.]

6. Conclusion

Measuring the performance of hedge funds is challenging because they follow a large number

of strategies. As a result, any model used for benchmarking performance is likely to be mis-

specified. In this context, comparing multiple models is essential to (i) describe their relative

differences, (ii) sharpen the evaluation of performance, and (iii) assess the relative importance of

the different factors.

In this paper, we develop a novel approach to perform such comparisons. Our approach pro-

vides an estimation of the entire alpha distribution obtained with any misspecified model. It is

simple, informative, and allows for formal comparison tests. It is simple because it uses as only

inputs the estimated fund alphas. It is informative because it captures the large heterogeneity

in performance across funds. Finally, it allows for formal comparison tests derived from a full-

fledged asymptotic theory.

The empirical results reveal that the standard models all produce the same strong performance,

possibly because they omit relevant factors. Motivated by these findings, we examine a set of

alternative factors proposed in recent work, including the correlation, variance, carry, and time-

series momentum strategies. Our analysis explains why these factors are likely to drive the returns

of hedge funds across different investment categories. It also shows that a simple model formed

with these factors achieves a sizeable reduction in hedge fund performance.

Overall, our results suggest that the average hedge fund returns are largely explained by a set

of mechanical strategies. However, all the models examined in this paper remain misspecified.

Our estimation approach can therefore be used in future work for the examination of a larger set of

factors. As the number of factors increases, it can also shed light on the importance of developing

models targeted at specific hedge fund categories.
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TABLE I. Summary Statistics for the Equal-Weighted Portfolio of Funds
This table reports, for each investment category, the average number of funds per month, the average and
volatility excess return (annualized), the skewness and kurtosis, and the 10th and 90th percentiles.

Number of
Funds

Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10% 90%

All Funds 3,268 5.85 5.93 -0.27 4.05 -1.63 2.50

Equity 1,450 7.02 8.76 -0.44 4.90 -2.42 3.47
Long-Short 1,279 7.39 9.58 -0.42 4.90 -2.64 3.71
Market Neutral 171 4.09 3.33 -0.42 5.40 -0.67 1.54

Macro 924 4.77 6.37 0.49 3.45 -1.74 2.63
Global Macro 358 5.02 5.61 0.27 3.23 -1.63 2.43
CTA/Managed Futures 566 4.72 7.17 0.57 3.60 -1.97 3.03

Arbitrage 895 5.84 5.19 -1.96 13.55 -1.11 1.95
Relative Value 577 5.23 4.71 -2.30 17.90 -0.95 1.66
Event-Driven 317 6.73 6.21 -1.49 8.96 -1.42 2.42
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TABLE II. Summary Statistics for the Factor Excess Returns
This table reports the average and volatility excess return (annualized), the skewness and kurtosis, and the
10th and 90th percentiles, of the various factors used in our study.

Panel A: US Equity
Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10%(Ann.) 90%(Ann.)

Market Index 7.56 15.13 -0.71 4.17 -5.11 6.00
Size 2.19 10.97 0.46 7.85 -3.56 3.65
Value 2.91 10.70 0.14 5.57 -2.95 3.62
Momentum 3.35 7.37 0.64 5.45 -1.85 2.98
Investment 4.15 9.70 -0.43 12.10 -2.04 3.21
Profitability 4.99 17.63 -1.49 13.26 -5.14 5.39
Liquidity 6.31 12.43 -0.13 4.11 -3.84 4.98
Betting Against Beta 8.58 13.52 -0.52 5.59 -3.56 4.73

Panel B: Other Asset Classes
Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10%(Ann.) 90%(Ann.)

US Bond Term -0.14 0.78 -0.18 4.68 -0.27 0.27
US Bond Default 0.02 0.64 1.22 19.18 -0.15 0.17
Commodity Index 0.59 21.81 -0.34 4.19 -7.60 7.51
US Dollar Index 0.60 5.76 -0.42 4.80 -1.96 2.07
Value Everywhere 2.33 6.22 -0.70 13.40 -1.54 1.79
Momentum Everywhere 3.81 7.82 -0.32 5.33 -2.31 2.74

Panel C: Option Strategies
Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10%(Ann.) 90%(Ann.)

Equity Correlation 82.14 50.73 -2.40 17.70 -5.29 19.47
Equity Variance 1.19 1.31 -7.25 82.05 -0.05 0.34
Bond Straddle 20.09 52.77 -1.31 5.24 -18.99 17.73
Commodity Straddle 6.56 49.48 -1.06 4.53 -20.02 15.98
Currency Straddle 10.24 67.47 -1.36 5.51 -23.31 20.30

Panel D: Carry Strategies
Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10%(Ann.) 90%(Ann.)

Equity Carry 8.21 9.41 0.50 6.03 -2.27 4.01
Bond Carry - Level 3.48 4.44 -0.30 4.61 -1.20 1.85
Bond Carry - Slope 0.42 0.45 1.15 9.43 -0.11 0.18
Commodity Carry 9.88 17.19 0.18 3.49 -5.43 7.18
Currency Carry 4.75 7.36 -0.67 4.76 -2.49 2.72

Panel E: Time-Series Momentum Strategies
Moments Quantiles

Mean(Ann.) Std(Ann.) Skewness Kurtosis 10%(Ann.) 90%(Ann.)

Equity TS Momentum 18.99 26.88 0.12 3.17 -8.37 11.80
Bond TS Momentum 17.72 28.32 0.10 4.24 -8.00 10.72
Commodity TS Momentum 10.36 15.32 -0.26 4.66 -4.29 6.22
Currency TS Momentum 11.63 17.94 0.38 5.23 -4.80 6.84
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TABLE III. Pairwise Correlation between the Factor Excess Returns
This table reports the average pairwise correlations (in absolute value) in the universe of factors.

US Equity Other Asset Classes Options Carry TS Momentum

US Equity 0.23 0.13 0.10 0.05 0.11
Other Asset Classes 0.20 0.15 0.10 0.20
Options 0.25 0.04 0.14
Carry 0.09 0.08
TS Momentum 0.19
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TABLE IV. Hedge Fund Performance under the Standard Models
This table reports summary statistics for the cross-sectional distribution of the hedge funds alphas obtained
with the standard models. Summary statistics are the average and the standard deviation of alphas, the
proportions of negative and positive alphas, and the 10th and 90th percentiles of the alphas. We also report
the average R2 and the GOS diagnostic value.

Moments Proportions Quantiles Specif. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Avg.R2 GOS

CAPM 2.62 (0.77) 9.19 (0.56) 31.66 (3.87) 68.34 (3.87) -6.44 (1.37) 11.08 (1.37) 18.85 2.92
3-Factor 2.25 (0.72) 9.13 (0.49) 33.63 (3.78) 66.37 (3.78) -7.03 (1.11) 10.72 (1.11) 21.77 2.60
AMP 2.25 (0.76) 9.30 (0.45) 34.41 (4.14) 65.59 (4.14) -6.98 (1.26) 10.87 (0.63) 22.84 2.37
4-Factor 2.17 (0.71) 9.00 (0.43) 34.08 (3.74) 65.92 (3.74) -6.75 (1.02) 10.46 (1.02) 23.43 2.49
5-Factor 2.47 (0.76) 9.40 (0.46) 33.21 (3.90) 66.79 (3.90) -6.90 (1.19) 11.16 (1.19) 22.70 2.55
Hasan-Lo 2.87 (0.57) 9.91 (0.44) 31.16 (2.85) 68.84 (2.85) -5.88 (0.78) 11.44 (0.78) 29.96 1.00
Fung-Hsieh 2.79 (0.68) 9.42 (0.44) 31.00 (3.37) 69.00 (3.37) -6.65 (1.33) 11.34 (0.67) 26.31 2.59

39

Electronic copy available at: https://ssrn.com/abstract=3661751



TABLE V. Hedge Fund Performance Comparison under the Standard Models

Panel A: Average
CAPM 3-F AMP 4-F 5-F H-L F-H

CAPM 0.38 0.37 0.46 0.16 -0.25 -0.16
3-Factor -0.38 -0.01 0.08 -0.22 -0.62 -0.54
AMP -0.37 0.01 0.09 -0.21 -0.62 -0.54
4-Factor -0.46 -0.08 -0.09 -0.30 -0.70 -0.62∗

5-Factor F5 -0.16 0.22 0.21 0.30 -0.40 -0.32
Hasan-LoL 0.25 0.62 0.62 0.70 0.40 0.08
Fung-Hsieh 0.16 0.54 0.54 0.62∗ 0.32 -0.08

Panel B: Standard Deviation
CAPM 3-F AMP 4-F 5-F H-L F-H

CAPM 0.05 -0.11 0.19 -0.21 -0.72∗ -0.24
3-Factor -0.05 -0.16 0.14 -0.27 -0.77∗ -0.29
AMP 0.11 0.16 0.30 -0.10 -0.61 -0.13
4-Factor -0.19 -0.14 -0.30 -0.40∗ -0.91∗∗ -0.43
5-Factor 0.21 0.27 0.10 0.40∗ -0.51 -0.02
Hasan-Lo 0.72∗ 0.77∗ 0.61 0.91∗∗ 0.51 0.48
Fung-Hsieh 0.24 0.29 0.13 0.43 0.02 -0.48

Panel C: Proportion of Positive Alphas
CAPM 3-F AMP 4-F 5-F H-L F-H

CAPM 1.97 2.76∗ 2.42∗ 1.56 -0.50 -0.66
3-Factor -1.97 0.78 0.45 -0.42 -2.47 -2.63
AMP -2.76∗ -0.78 -0.33 -1.20 -3.25 -3.42
4-Factor -2.42∗ -0.45 0.33 -0.87 -2.92 -3.08
5-Factor 5 -1.56 0.42 1.20 0.87 -2.05 -2.22
Hasan-Lo 0.50 2.47 3.25 2.92 2.05 -0.16
Fung-Hsieh 0.66 2.63 3.42 3.08 2.22 0.16

Panel D: 10th Percentile
CAPM 3-F AMP 4-F 5-F H-L F-H

CAPM 0.59∗∗∗ 0.53∗∗∗ 0.31 0.45∗ -0.56 0.20
3-Factor -0.59∗∗∗ -0.06 -0.28∗∗ -0.13 -1.15 -0.38∗

AMP -0.53∗∗∗ 0.06 -0.22 -0.08 -1.09 -0.33
4-FactorA -0.31 0.28∗∗ 0.22 0.14 -0.87 -0.11
5-Factor -0.45∗ 0.13 0.08 -0.14 -1.01 -0.25
Hasan-Lo 0.56 1.15 1.09 0.87 1.01 0.76
Fung-Hsieh -0.20 0.38∗ 0.33 0.11 0.25 -0.76

Panel E: 90th Percentile
CAPM 3-F AMP 4-F 5-F H-L F-H

CAPM 0.36∗ 0.22 0.62∗∗ -0.08 -0.36 -0.26
3-Factor -0.36∗ -0.15 0.26∗∗∗ -0.44∗∗ -0.72 -0.62∗∗∗

AMP -0.22 0.15 0.41 -0.29 -0.57 -0.47∗

4-FactorA -0.62∗∗ -0.26∗∗∗ -0.41 -0.70∗∗∗ -0.98 -0.88∗∗∗

5-Factor 5 0.08 0.44∗∗ 0.29 0.70∗∗∗ -0.28 -0.18
Hasan-Lo 0.36 0.72 0.57 0.98 0.28 0.10
Fung-Hsieh 0.26 0.62∗∗∗ 0.47∗ 0.88∗∗∗ 0.18 -0.10
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TABLE VI. Alternative Factors for Equity Funds

Panel A: Impact of the Factors on Performance
Moments Proportions Quantiles Specif. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

CAPM 2.06 (0.94) 8.19 (0.51) 33.45 (5.07) 66.55 (5.07) -6.47 (1.36) 10.29 (1.36) 26.31 3.74
CAPM + Factors 0.36 (0.92) 10.09 (0.52) 47.14 (4.65) 52.86 (4.65) -9.13 (1.63) 9.60 (1.22) 33.53 3.12

Difference 1.70∗∗∗ (0.61) -1.90∗∗∗ (0.55) -13.70∗∗∗ (3.11) 13.70∗∗∗ (3.11) 2.66∗∗∗ (0.73) 0.69 (0.73)
Panel B: Return Premium for Each Factor

Moments Proportions Quantiles Correlation

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Factors Alpha

Correlation 0.18 6.11 42.59 57.41 -2.75 3.18 -0.11 -0.23
Variance 0.43 5.21 45.40 54.60 -2.55 3.96 -0.10 -0.21
Liquidity 0.23 1.62 40.48 59.52 -0.88 1.55 0.02 -0.13
Betting Against Beta 0.04 4.16 44.88 55.12 -3.20 3.17 -0.07 -0.28
Equity Carry 0.27 1.92 44.40 55.60 -1.40 2.13 0.01 -0.16
Equity TS Momentum 0.56 2.38 39.72 60.28 -1.09 2.82 0.01 -0.12

Average 0.28 3.57 42.91 57.09 -1.98 2.80 -0.04 -0.19
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TABLE VII. Alternative Factors for Macro Funds

Panel A: Impact of the Factors on Performance
Moments Proportions Quantiles Specif. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

CAPM 3.32 (1.19) 11.59 (1.05) 32.16 (4.32) 67.84 (4.32) -7.44 (1.37) 13.75 (2.06) 8.45 4.23
CAPM + Factors -0.56 (1.06) 13.44 (1.09) 54.67 (4.59) 45.33 (4.59) -12.42 (1.47) 10.62 (1.47) 20.36 2.66

Difference 3.88∗∗∗ (0.93) -1.85∗ (0.95) -22.50∗∗∗ (3.89) 22.50∗∗∗ (3.89) 4.99∗∗∗ (0.71) 3.13 (2.12)

Panel B: Return Premium for Each Factor
Moments Proportions Quantiles Correlation

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Factors Alpha

Equity Carry 0.17 2.11 44.68 55.32 -1.60 2.05 -0.03 -0.09
Bond Carry (level) 0.50 2.79 40.20 59.80 -1.77 3.02 -0.01 -0.17
Bond Carry (slope) 0.28 2.88 44.31 55.69 -2.09 2.80 -0.01 -0.20
Commodity Carry 0.10 2.14 42.76 57.24 -1.18 1.52 0.01 -0.34
Currency Carry -0.10 2.17 53.08 46.92 -1.95 1.47 -0.03 -0.09
Equity TS Mom. 0.46 2.32 43.05 56.95 -1.16 2.73 0.03 -0.24
Bond TS Mom. 1.15 4.04 37.51 62.49 -2.32 5.36 0.04 -0.30
Commodity TS Mom. 0.59 3.29 38.36 61.64 -1.47 3.41 -0.03 -0.06
Currency TS Mom. 0.73 2.73 33.06 66.94 -1.04 3.05 0.02 -0.16

Average 0.43 2.72 41.89 58.11 -1.62 2.82 0.00 -0.18
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TABLE VIII. Alternative Factors for Arbitrage Funds

Panel A: Impact of the Factors on Performance
Moments Proportions Quantiles Specif. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

CAPM 2.80 (0.76) 7.75 (0.46) 28.32 (4.29) 71.68 (4.29) -5.63 (1.44) 10.13 (0.72) 17.68 4.78
CAPM + Factors 1.39 (0.67) 9.05 (0.58) 37.72 (3.42) 62.28 (3.42) -8.32 (1.43) 9.59 (0.57) 24.47 3.48

Difference 1.41∗∗ (0.57) -1.30∗∗∗ (0.38) -9.40∗∗∗ (3.14) 9.40∗∗∗ (3.14) 2.69∗∗∗ (0.31) 0.54∗ (0.31)

Panel B: Return Premium for Each Factor
Moments Proportions Quantiles Correlation

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Factors Alpha

Correlation -0.10 3.47 48.65 51.35 -2.08 2.18 -0.13 -0.26
Variance 0.69 3.43 33.17 66.83 -1.33 3.34 -0.07 -0.07
Liquidity 0.12 1.18 43.27 56.73 -0.64 0.94 -0.05 -0.19
Bond Carry (level) 0.42 1.63 36.94 63.06 -0.96 2.26 0.01 -0.24
Bond Carry (slope) 0.28 1.79 41.74 58.26 -1.22 1.96 0.01 -0.27

Average 0.28 2.30 40.75 59.25 -1.25 2.14 -0.05 -0.21
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TABLE IX. Performance Comparison under the New Model

Panel A: All Funds
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -0.07 (0.75) 11.54 (0.50) 48.15 (3.37) 51.85 (3.37) -11.23 (1.71) 9.84 (0.57) 27.91 2.18
Difference

vs CAPM -2.70∗∗∗ (0.59) 2.35∗∗∗ (0.62) 16.49∗∗∗ (2.93) -16.49∗∗∗ (2.93) -4.79∗∗∗ (0.91) -1.24∗∗∗ (0.45)
vs 4-Factor -2.24∗∗∗ (0.59) 2.54∗∗∗ (0.50) 14.07∗∗∗ (2.86) -14.07∗∗∗ (2.86) -4.48∗∗∗ (1.13) -0.62 (0.75)
vs 5-Factor -2.54∗∗∗ (0.64) 2.14∗∗∗ (0.53) 14.93∗∗∗ (3.07) -14.93∗∗∗ (3.07) -4.33∗∗∗ (0.70) -1.32∗ (0.70)
vs Fung-Hsieh -2.86∗∗∗ (0.62) 2.11∗∗∗ (0.53) 17.15∗∗∗ (2.96) -17.15∗∗∗ (2.96) -4.58∗∗∗ (1.10) -1.50∗∗∗ (0.37)

Panel B: Equity Funds
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -0.18 (0.92) 10.47 (0.53) 50.04 (4.33) 49.96 (4.33) -10.28 (1.37) 9.69 (0.92) 33.81 2.59
Difference

vs CAPM -2.24∗∗∗ (0.68) 2.28∗∗∗ (0.60) 16.59∗∗∗ (3.53) -16.59∗∗∗ (3.53) -3.81∗∗∗ (0.75) -0.60 (1.13)
vs 4-Factor -1.79∗∗∗ (0.67) 2.59∗∗∗ (0.50) 13.62∗∗∗ (3.29) -13.62∗∗∗ (3.29) -3.62∗∗∗ (0.75) 0.41 (0.75)
vs 5-Factor -2.36∗∗∗ (0.75) 2.13∗∗∗ (0.58) 15.49∗∗∗ (3.70) -15.49∗∗∗ (3.70) -3.94∗∗∗ (1.04) -0.90 (0.69)
vs Fung-Hsieh -2.55∗∗∗ (0.71) 2.24∗∗∗ (0.54) 17.67∗∗∗ (3.51) -17.67∗∗∗ (3.51) -3.77∗∗∗ (1.06) -0.91 (1.06)

Panel C: Macro Funds
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -1.49 (1.12) 14.73 (1.01) 56.26 (3.82) 43.74 (3.82) -15.52 (2.29) 10.74 (1.14) 19.47 2.69
Difference

vs CAPM -4.81∗∗∗ (1.01) 3.14∗∗∗ (1.22) 24.09∗∗∗ (3.78) -24.09∗∗∗ (3.78) -8.08∗∗∗ (2.20) -3.02∗ (1.76)
vs 4-Factor -4.05∗∗∗ (1.03) 3.35∗∗∗ (1.01) 20.14∗∗∗ (3.99) -20.14∗∗∗ (3.99) -7.36∗∗∗ (1.68) -2.33∗∗ (1.01)
vs 5-Factor -4.03∗∗∗ (1.08) 2.85∗∗∗ (1.03) 19.77∗∗∗ (4.38) -19.77∗∗∗ (4.38) -6.66∗∗∗ (1.98) -2.51∗∗ (0.99)
vs Fung-Hsieh -4.77∗∗∗ (1.04) 2.52∗∗ (1.10) 24.01∗∗∗ (3.94) -24.01∗∗∗ (3.94) -7.54∗∗∗ (2.11) -2.97∗∗∗ (1.06)

Panel D: Arbitrage Funds
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model 1.53 (0.68) 8.95 (0.67) 36.94 (3.78) 63.06 (3.78) -6.89 (1.37) 9.44 (0.69) 27.19 3.20
Difference

vs CAPM -1.27∗∗ (0.61) 1.20∗∗ (0.53) 8.61∗∗ (3.44) -8.61∗∗ (3.44) -1.26∗ (0.67) -0.69 (0.45)
vs 4-Factor -1.11∗ (0.60) 1.19∗∗ (0.50) 8.61∗∗ (3.52) -8.61∗∗ (3.52) -1.39∗∗ (0.68) -0.40∗ (0.23)
vs 5-Factor -1.30∗∗ (0.62) 0.94∗ (0.50) 9.15∗∗∗ (3.45) -9.15∗∗∗ (3.45) -1.45 (0.94) -0.86 (0.70)
vs Fung-Hsieh -1.41∗∗ (0.57) 1.19∗∗ (0.58) 9.36∗∗∗ (3.36) -9.36∗∗∗ (3.36) -1.43 (0.88) -0.64 (0.66)
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TABLE X. Performance Comparison under the New Model – Robustness Analysis

Panel A: Multi-Strategy
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -0.79 (0.90) 10.25 (0.72) 49.78 (3.84) 50.22 (3.84) -11.49 (1.93) 9.25 (0.77) 28.54 0.80
Difference

vs CAPM -2.92∗∗∗ (0.73) 1.20 (0.82) 20.04∗∗∗ (3.98) -20.04∗∗∗ (3.98) -4.47∗∗∗ (0.80) -1.19∗∗ (0.53)
vs 4-Factor -2.63∗∗∗ (0.68) 1.30∗ (0.70) 16.08∗∗∗ (3.88) -16.08∗∗∗ (3.88) -3.80∗∗∗ (0.88) -1.36∗∗∗ (0.39)
vs 5-Factor -3.21∗∗∗ (0.78) 0.50 (1.21) 18.94∗∗∗ (4.27) -18.94∗∗∗ (4.27) -3.76∗∗∗ (0.82) -1.96∗∗∗ (0.61)
vs Fung-Hsieh -3.22∗∗∗ (0.72) 0.67 (0.93) 20.26∗∗∗ (3.45) -20.26∗∗∗ (3.45) -4.74∗∗∗ (0.90) -1.39∗ (0.72)

Panel B: Funds of Funds
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -3.48 (1.03) 6.99 (0.50) 75.25 (6.41) 24.75 (6.41) -10.72 (2.02) 2.53 (0.90) 44.13 11.77
Difference

vs CAPM -3.74∗∗∗ (0.95) 1.22∗∗ (0.52) 34.99∗∗∗ (8.83) -34.99∗∗∗ (8.83) -5.20∗∗∗ (1.61) -2.74∗∗∗ (0.54)
vs 4-Factor -3.11∗∗∗ (0.79) 1.29∗∗∗ (0.47) 28.60∗∗∗ (7.66) -28.60∗∗∗ (7.66) -4.71∗∗∗ (1.09) -2.01∗∗∗ (0.65)
vs 5-Factor -3.71∗∗∗ (0.92) 1.23∗∗∗ (0.47) 34.34∗∗∗ (8.89) -34.34∗∗∗ (8.89) -5.48∗∗∗ (1.16) -2.64∗∗∗ (0.92)
vs Fung-Hsieh -4.11∗∗∗ (0.89) 1.12∗∗ (0.52) 38.39∗∗∗ (7.59) -38.39∗∗∗ (7.59) -5.48∗∗∗ (1.28) -3.60∗∗∗ (0.77)

Panel C: Sub Period January 1994 to June 2005 (first 138 observations)
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model 1.66 (1.49) 14.83 (1.01) 39.90 (5.05) 60.10 (5.05) -12.58 (2.98) 14.77 (1.79) 22.89 1.16
Difference

vs CAPM -4.87∗∗∗ (1.26) 4.51∗∗∗ (1.14) 22.95∗∗∗ (4.18) -22.95∗∗∗ (4.18) -9.80∗∗∗ (2.32) -2.28 (1.93)
vs 4-Factor -3.16∗∗ (1.49) 4.49∗∗∗ (1.01) 16.57∗∗∗ (5.12) -16.57∗∗∗ (5.12) -8.35∗∗∗ (1.91) -0.11 (1.91)
vs 5-Factor -3.57∗∗ (1.51) 3.89∗∗∗ (1.06) 17.66∗∗∗ (5.19) -17.66∗∗∗ (5.19) -7.99∗∗∗ (2.23) -1.08 (1.86)
vs Fung-Hsieh -4.06∗∗∗ (1.43) 5.07∗∗∗ (0.97) 21.06∗∗∗ (4.86) -21.06∗∗∗ (4.86) -9.26∗∗∗ (2.48) -0.72 (1.42)

Panel D: Sub Period July 2005 to December 2016 (last 138 observations)
Moments Proportions Quantiles Spec. Stats

Mean(Ann.) Std(Ann.) Negative Positive 10%(Ann.) 90%(Ann.) Av.R2 GOS

New Model -0.20 (0.90) 9.95 (0.52) 50.03 (4.41) 49.97 (4.41) -10.18 (1.37) 9.04 (0.91) 32.28 2.61
Difference

vs CAPM -1.71∗∗ (0.74) 1.11∗ (0.65) 10.97∗∗ (4.34) -10.97∗∗ (4.34) -2.73∗∗∗ (0.88) -0.48 (0.44)
vs 4-Factor -1.56∗∗ (0.65) 1.43∗∗∗ (0.55) 10.41∗∗∗ (3.78) -10.41∗∗∗ (3.78) -2.84∗∗∗ (1.00) -0.21 (0.67)
vs 5-Factor -2.04∗∗∗ (0.74) 1.16∗∗ (0.54) 13.10∗∗∗ (3.99) -13.10∗∗∗ (3.99) -2.96∗∗∗ (0.99) -1.01 (0.66)
vs Fung-Hsieh -2.10∗∗∗ (0.69) 0.66 (0.58) 13.07∗∗∗ (3.86) -13.07∗∗∗ (3.86) -2.66∗∗ (1.06) -1.21∗ (0.70)
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