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Abstract

I present Bayesian inference and model selection through a detailed example of the
Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm, using a count
data application. I use an adaptive Metropolis-Hastings algorithm in conjunction with
RJMCMC to improve parameter convergence. After reviewing the Bayesian paradigm
and the theory underlying model selection and the RJMCMC algorithm, I implement
the technique on a bank-level dataset of consumer loan default realizations.

Keywords. Bayesian Methods, Reversible Jump Markov Chain Monte Carlo, Adap-
tive Metropolis-Hastings, Count data, Hurdle model, Consumer default.

In this note, I am interested in modeling payment default realizations on consumer loans

using a cross-sectional dataset provided by a Canadian institution. The dependent variable

used in the analysis is the number of missed payments on the loan, which is the count variable

of interest. Each missed payment increases the count variable by one. My focus is on model

selection; I propose different specifications and I use Bayesian model selection to calculate

posterior probabilities of the competing models.

Count data models have a wide range of applications in economics, finance and insurance.

Among many examples, such models have been used in health economics for the number of

hospital visits in a year, in insurance for the number of accidents or claims filed during a given

period and in finance for the number of late payments on a loan. The Poisson regression has

been used extensively to model such variables. It is a convenient underlying distribution for

non-negative integer stochastic processes but its well known equidispersion property is often

too restrictive for the observed data.

∗I am grateful to Richard Luger and Rusty Tchernis for helpful discussions and to Georges Dionne for
providing the dataset used. I acknowledge financial support from SSHRC. Comments are welcome.
†Risk Management and Insurance Department, J. Mack Robinson College of Business, Georgia State

University. Contact: pdastous1@gsu.edu
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In a seminal paper, Cameron and Trivedi (1986) present many extensions to the Poisson

regression model, allowing to relax some of its strong assumptions. For example, a more

flexible functional form can be obtained by adding a random component to the individual

means, increasing heterogeneity across observations. Assuming that this random component

follows a Gamma distribution leads to a Negative Binomial density function for the depen-

dent variable, which allows for overdispersion in the data. One can also cope with clusters of

observations at certain realizations (for example, excess zeros) or truncation by using hurdle

models and truncated distributions (see Dionne and Vanasse (1989) and Dionne, Art́ıs, and

Guillén (1996) for some applications).

With these different modeling possibilities, it becomes interesting to compare the estima-

tion performance using different assumptions for the underlying population distribution. In

the classical approach to model selection, competing models are estimated independently and

are compared using different measures and statistics (for example, Adjusted R2, Akaike In-

formation Criterion (AIC), Bayesian Information Criterion (BIC) or Likelihood Ratio tests).

Several researchers have challenged this approach on different grounds (see, for example,

Hansen (2005)). One of the argument against adopting the classical approach is that it

neglects model uncertainty, that is, the probability that a given model is the right one.

Furthermore, comparing non-linear or non-nested models complicates the analysis (see, for

example, Vuong (1989)).

Another option for this problem is to adopt a Bayesian framework where it is straight-

forward to extend the inference to account for model uncertainty and non-nested models.

Using the posterior marginal likelihood, one can compute Bayes factors and posterior model

probabilities which can, in turn, be used as a model selection criteria or in Bayesian model

averaging. I thus use Markov Chain Monte Carlo (MCMC) methods to jointly estimate

the uncertainty about parameters and competing model probabilities by extending the state

space of the Markov Chain to allow for a model indicator. This technique, which was first

introduced by Green (1995) under the term Reversible Jump Markov Chain Monte Carlo

(RJMCMC), allows direct inferential access to the posterior model probabilities. Estimates

of the marginal likelihoods of each model are directly obtained after a run of the algorithm,

whereas independent estimation of the models by MCMC usually requires additional numer-

ical computations.

The RJMCMC algorithm should be seen as a generalization of the Metropolis-Hastings

(MH) algorithm. In the standard MH algorithm, the objective is to construct a Markov

Chain which has as its invariant distribution the posterior of the parameters of interest. In

doing so, the MH algorithm sweeps through the parameter space by proposing a candidate

value for the parameter at each iteration and accepting it with a probability derived using
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the detailed balance condition. In RJMCMC, the estimation of the parameters within each

model follows the same procedure. The major difference comes from an additional step in

the algorithm allowing to jump across different competing models during the computation.

The proof of convergence of RJMCMC is surprisingly similar to the one used in the basic

MH procedure. Both algorithms rely on the detailed balance condition but in the case of

Reversible Jump, one needs to consider a slightly generalized state space for the Markov

Chain.

Since the seminal paper of Green (1995), researchers have been active in applying trans-

dimensional Markov chains to various problems.1 According to Hastie and Green (2012),

“[...] around 45% of the articles citing Green (1995) are in statistics and proba-

bility, about 28% in biology, genetics and medicine [...], about 20% in computer

science and engineering and about 15% in other disciplines ranging from ar-

chaeometry through management science to water resources research.”

Some applications in business are in finance (e.g., GARCH model selection: Vrontos, Del-

laportas, and Politis (2000); high-frequency data: Centanni and Minozzo (2006)) and in

insurance (e.g., claim count: Ntzoufras, Katsis, and Karlis (2005); aggregate loss: Auśın,

Vilar, Cao, and González-Fragueiro (2011)).

I introduce a simple but rich example allowing to illustrate the technique and to highlight

the importance of model selection in the context of consumer default. The count variable

ranges from 0 to 6 and represents the number of missed payments on the loan. For example,

a borrower who is less than 29 days late on his loan payment has a realized count of 0

since a billing cycle is assumed to be 30 days. The default status increases in the length of

delinquency up to a value of 6, representing a borrower who has missed 6 payments on the

loan, or equivalently, who is 180 days late on his loan payment.

I estimate the different count data models and their respective posterior probability for

underlying distributions assumed to be either Poisson or Negative Binomial and allowing

or not for an excess realization of zeros through hurdle models. I compare two pairs of

models: the Poisson and Negative Binomial regression models and the Poisson Hurdle and

Negative Binomial Hurdle regression models. The Negative Binomial specification allows for

overdispersion in the data (as compared to the Poisson model) but it does not specifically

take into account a possible excess realization of zeros, which is why the hurdle specifications

are also considered.

I find that the Negative Binomial model has a higher posterior probability than the

Poisson model when I do not account for excess zero realizations through hurdle models.

1See Sisson (2005) for a review on the recent progress on RJMCMC.
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The additional parameter in the Negative Binomial model captures the overdispersion of the

data which is very severe considering that 98.99% of the borrowers have a default status

of 0. However, when I extend the analysis to hurdle models, the Poisson and Negative

Binomial specifications have roughly the same estimated posterior model probabilities. This

shows that once the zero realizations are modeled correctly, the residual overdispersion in

the truncated count distribution is negligible. The results highlight the importance of the

hurdle specification when there is a cluster of realizations around a realization of the count

variable.

The structure of the paper is as follows. In Section 1, I present the different count data

models used in the analysis. In Section 2, I introduce the Bayesian paradigm and model

selection. In Section 3, I present the theory underlying the RJMCMC algorithm. In section

4, I detail the algorithm used in the loan repayment application. In section 5, I present the

data and the implementation. In Section 6, I give the results and I conclude in Section 7.

1 Count Data Models

I briefly introduce the two classical count data models used in the analysis with their hurdle

extensions, and I refer the reader to Cameron and Trivedi (1998) for an extensive discussion

on count data regression models. The likelihood under the assumption that the count variable

is independent and identically distributed following a Poisson model of parameter λ is

LP (Y |λ) =
n∏
i=1

λYii
Yi!

exp(−λi).

Introducing covariates is done through the parametrization of the conditional mean by

E[Yi|Xi] = λi = exp(X ′iβ), (1)

where Xi is the vector of covariates and β is its associated vector of parameters. Hence,

conditioning on λ also implies conditioning on X in what follows. As it is well known, for

this distribution the mean and variance are both given by λ. However, many datasets used

in practice do not satisfy this equidispersion property. Among extensions proposed in the

literature, a convenient way to allow for more flexibility is to introduce a random component

in the expected mean such that

E[Yi|Xi] = λiεi.
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Under this specification, the mean is derived from a deterministic function, λi but has

a random component, εi, allowing for increased heterogeneity across observations. Note

that for E[εi] = 1, the conditional mean remains equal to λi. When εi follows a Gamma

distribution, the density of the data can be shown to be Negative Binomial (see Cameron

and Trivedi (1998) for the derivation). The likelihood under the assumption that the count

variable is independent and identically distributed following a Negative Binomial model of

parameters λ and κ is then

LNB(Y |λ, κ) =
n∏
i=1

λYii
Yi!

Γ(1/κ+ Yi)

Γ(1/κ)(1/κ+ λi)Yi
(1 + κλi)

−1/κ.

It can be shown that the mean and variance of this distribution are respectively given by λ

and λ(1 + κλ). The model has κ > 0 as a parametric restriction. Covariates are introduced

through the mean parameter, as in equation (1).

Both the Poisson and Negative Binomial models can be extended to allow for an excess

realization of zeros (as compared to that predicted by the theoretical distribution). In the

hurdle extension, the idea is to model the zero realizations with a binary outcome model

and to model the strictly positive realizations with a truncated distribution. The number

of parameters are thus doubled. I normalize κ = 0 in the binary outcome model so that,

in both cases, the probabilities of a zero realization and of a strictly positive realization are

given by

P[Yi = 0|Xi] = (1 + λHi )−1

1− P[Yi = 0|Xi] = 1− (1 + λHi )−1.

These probabilities can be derived directly from the Poisson distribution and they are equiv-

alent to a logit model in classical estimation. The likelihood for the hurdle part of the model

is given by

LH1 (Y |λH) =
n∏
i=1

P[Yi = 0|Xi]
(1−Iyi )(1− P[Yi = 0|Xi])

Iyi ,

where Iyi is the indicator that Yi > 0. When Yi > 0, the count variable is modeled with

truncated-at-zero Poisson or Negative Binomial distributions, where

LP2 (Y |Yi > 0,λ) =
n∏
i=1

exp− exp(λi) exp(λiYi)

Yi![1− exp− exp(λi)]
,
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is the likelihood for the truncated-at-zero Poisson, and,

LNB2 (Y |Yi > 0,λ, κ) =
n∏
i=1

λYii
Yi!

Γ(1/κ+ Yi)

Γ(1/κ)(1/κ+ λi)Yi

(
(1 + λiκ)−1/κ − 1

)−1
,

is the likelihood for the truncated-at-zero Negative Binomial. For a given model, the likeli-

hood is then the product of the hurdle part and the truncated distribution part. For example,

the likelihood of the Poisson Hurdle model is given by,

LPH(Y |λ) = LH1 (Y |λH)LP2 (Y |Yi > 0,λ).

To implement these models in a Bayesian framework, priors on each parameters must be

specified. The prior on κ is chosen to be

π(κ) =
1

Γ(ακ)βακ
κακ−1 exp

(
−κ
βκ

)
, (2)

following Hastie and Green (2012), that is, Gamma distributed of parameters (ακ, βκ). For

the covariates, the prior on each of the βj is chosen to be Normal distributed so that the

joint prior density is given by

π(β) =
J∏
j=0

1√
2πσ2

j

exp

[
− 1

2σ2
j

(βj − bj)2

]
. (3)

In Bayesian econometrics, the prior density for the covariates is often chosen to be Normal

since it insures conjugacy in the linear regression model. Although conjugacy is not a

requirement when using the MH algorithm, I follow this standard.

2 Bayesian Model Selection

For a concise notation, let θ represent the parameters of interest in the model under consid-

eration (i.e., for Poisson θ1 = β1, whereas for Negative Binomial θ2 = (β2, κ)). For a given

model, the joint density of the vectors of model parameters (θ) and of observed data (Y )

can be written as

p(Y ,θ) = p(Y )p(θ|Y ) = π(θ)L(Y |θ).

This simple formulation provides a decomposition in which the prior density of the param-

eters, π(θ), their posterior density, p(θ|Y ), and the likelihood function, L(Y |θ), are made
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explicit. Rearranging, or equivalently, using Bayes’ theorem,

p(θ|Y ) =
π(θ)L(Y |θ)

p(Y )
∝ π(θ)L(Y |θ), (4)

where the proportionality is useful since p(Y ) does not depend on model parameters. Under

the Bayesian paradigm, inference on the parameters is then achieved through the posterior

density, on which a Markov Chain can be constructed.2

2.1 Model Uncertainty

To introduce model uncertainty in the Bayesian framework, let k = 1, 2, ..., be model indica-

tors for each of the competing models, indexed in a countable set K. Each model is assumed

to have a parameter vector θk of dimension nk, possibly varying across models. In model

selection, the interest is to treat (k,θk) as a joint unknown, for which, using Baye’s theorem,

the posterior density can be written as

p(k,θk|Y ) =
π(k,θk)L(Y |k,θk)∑

k′∈K
∫
π(k′,θ′k′)L(Y |k′,θk′)dθ′k′

,

and can be factorised as

p(k,θk|Y ) = p(k|Y )︸ ︷︷ ︸
Posterior model probability

p(θk|k,Y ).︸ ︷︷ ︸
Model-specific parameter posterior

This factorisation allows to break down the estimation results in two parts: a posterior model

probability and a model-specific parameter posterior. The marginal likelihood of model k is

then derived as

p(Y |k) =

∫
L(Y |k,θk)π(θk|k)dθk. (5)

Except for a few special cases, the marginal likelihood is not available in closed form solution

and must be evaluated numerically via Monte Carlo simulations. It is a crucial part of model

selection since it is used in the determination of posterior model probabilities. Specifically,

the posterior model probability of model k is defined as

p(k|Y ) =
p(Y |k)π(k)∑

ki∈K p(Y |ki)π(ki)
.

2See Casella and George (1992) and Chib and Greenberg (1995) for detailed presentations of the Gibbs
sampling and Metropolis-Hastings algorithms, two of the most widely used inference methods in the Bayesian
paradigm.

7



Posterior probabilities for each model considered could then be used in Bayesian averaging

(see, for example Hoeting, Madigan, Raftery, and Volinsky (1999)).

In the current application, models are compared two by two with k = 1, 2 respectively

representing the Poisson and Negative Binomial specifications (or their respective hurdle

extension). The ratio of two competing models’ posterior probabilities is the posterior model

odds and is defined as

PO12 =
p(k = 1|Y )

p(k = 2|Y )
= BF12

π(k = 1)

π(k = 2)
,

where the Bayes factor is given by

BF12 =
p(Y |k = 1)

p(Y |k = 2)
.

When the prior model probabilities are the same across competing models, the Bayes factor

is equal to the posterior odds. One way to compare the evidence of model 1 against model

2 is to compute either the Bayes factor or the posterior model odds of the two models. For

example, high values of BF12 provide strong evidence for model 1 against model 2. As will

be made clear, the RJMCMC algorithm allows to estimate the posterior model probabilities

in a run of the algorithm without requiring additional numerical estimations.

3 Reversible Jump Algorithm

I present the Reversible Jump Markov Chain Monte Carlo algorithm following the notation

and derivation used in Hastie and Green (2012). The algorithm was first introduced by

Green (1995) and provides a convenient way to implement Bayesian model selection. The

particularity of this technique, which makes it favorable to model selection, is that it provides

a framework where Markov Chain Monte Carlo simulations can be built over more general

state spaces than the traditional Metropolis-Hastings algorithm. In particular, it allows to

compare models with a different number of parameters without additional computational

burden. It also avoids the numerical calculation of the integral in the marginal likelihood of

equation (5).

Following the intuition of MCMC, the objective is to construct a Markov chain that has

as its invariant distribution the posterior of interest, that is (k,θk) ∼ p(k,θk|Y ). Whereas

the state space of the Markov chain usually consists in the state space of the parameter

vector in the traditional MH algorithm, in RJMCMC one needs additionally to consider the
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given model as part of the state. A given state is thus represented by

(k,θk) = (k,θk,1,θk,2, ...,θk,nk)

on a state space

X = ∪k∈K ({k} × Xk) ,

where, for each k, Xk ⊂ Rnk . This allows to have direct inferential access to the model

indicator k in each state, which proves to be crucial in analysing the output of the algorithm.

A typical RJMCMC algorithm has the following structure:

1. Randomize the initial parameter values, including the model state.

2. Within the current model, run a Metropolis-Hastings algorithm to update the parameters.

3. Propose a jump to a different model, accepted with a given probability.

4. If the jump is accepted, switch to the new model, if not, stay in the current model.

5. Redo steps 2 to 4 iteratively.

As the structure of the algorithm shows, implementation is closely related to the Metropolis-

Hastings algorithm with the difference that a second kind of acceptance probability, as shown

by Step 4, must be considered. An interesting feature of the technique is that the number of

times that a model has been visited in a given run is an estimate of the posterior probability

of the model. This allows the researcher to either select the most plausible model given the

data or to use Bayesian model averaging in making predictions.

The key trick to achieve smooth transition across vectors of different dimensions is to

construct a diffeomorphism transformation, that is, a transformation that allows to keep

track of the same number of parameters in each state. That way, the dimension-jumping

across models does not introduce any additional computational burden.

Consider for example an initial state x that has a different dimension than the proposed

forward state x′. The idea is to generate r random numbers u from a density g at the current

state and to use a deterministic function h mapping the current state to the proposed one,

i.e., (x′, u′) = h(x, u). For example, let the dimensions of x, x′, u and u′ be n, n′, r and r′.

Assume that the function h maps the current x to the forward state x′ whereas the reverse

move is mapped by the inverse function h′. In this case, a diffeomorphism transformation is

one in which n+ r = n′ + r′.

Let the across-model moves m be indexed in a countable set M. Since the detailed

balance condition needs ultimately to be achieved, a given move consists both of the forward
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move x → x′ and its reverse x′ → x. The parameter jm(x) exogeneously determines with

what probability an across-model move will be attempted at state x. The “detailed balance

condition” holds if and only if∫
p(x)jm(x)gm(u)αm(x, x′)dxdu =

∫
p(x′)jm(x′)gm(u′)αm(x′, x)dx′du′. (6)

One should appreciate the similarity between condition (6) and the usual condition satisfying

detailed balance in the MH algorithm. Solving this equation actually proceeds in the same

way as the proof of convergence for the MH algorithm; αm is set such as to force the equality

for each move considered. The major difference is now that the solution to this equality

involves a change of variable in the function h. The acceptance probability can be shown to

be αm(x, x′) = min{1, Am(x, x′)}, where

Am(x, x′) =
p(x′)

p(x)

jm(x′)

jm(x)

g′m(u′)

gm(u)

∣∣∣∣∂(θ′k′ , u
′)

∂(θk, u)

∣∣∣∣ ,
and where the last term is the Jacobian of the transformation. With this probability, one

can now derive all that is needed to implement the algorithm.

4 Algorithm

In this section, I give details on the procedure used to compare the different models. I

compare models two by two, that is, I compare the Poisson model to the Negative Binomial

model and I compare the Poisson hurdle model to the Negative Binomial Hurdle model. For

each pair of models compared, I follow the same two-step procedure, akin to an adaptive

MH procedure. I start by estimating each model individually to get a first estimate of the

parameters before implementing the RJMCMC algorithm in the second step of the procedure.

I detail the comparison between the Poisson and Negative Binomial regression models since

the extension to the hurdle specifications is trivial when replacing the likelihood functions

according to the derivations presented in Section 1.

In the first step, I run a random walk MH algorithm on each individual model for r =

50, 000 iterations, from which I discard the first b = 20, 000 iterations as burn-in. For a

general parameter vector θ, this is done by iterating on the following:

1. At iteration r, generate a proposed θr from θr = θr−1 + ε, where ε ∼ N(0,Ω) and θr−1

is the (r − 1)th MCMC iterate of θ.

2. Accept θr with probability p = min
(

1, p(θr)
p(θr−1)

)
, otherwise set θr = θr−1.
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The function p is the one given by equation (4). Note that an additional accept/reject step

is needed for the Negative Binomial estimation since κ > 0 is a parametric restriction of the

model. Alternatively, the model could be reparameterized using log(κ).

In this first step, Ω is chosen to be diagonal, with variances tuned to obtain an acceptance

rate between 25% and 45%. After discarding the first 20,000 iterations, I estimate the sample

mean µθ and the sample covariance matrix Ωθ of the chain. This gives an accurate picture of

the parameters and their interaction, which I then use in the second step of the procedure.

In the second step, I run the RJMCMC algorithm, using an independent MH algorithm

for the within-model part of the algorithm, using the calibrated values of µθ and Ωθ. Before

presenting the across-model part of the algorithm, note that for a general parameter vector

θ, the within-model independent MH algorithm is done by iterating on the following:

1. At iteration r, generate a proposed θr from θr = µθ + ε, where ε ∼ N(0,Ωθ).

2. Accept θr with probability p = min
(

1, p(θ
r)g(θr−1)

p(θr−1)g(θr)

)
, where g is the Normal density, oth-

erwise set θr = θr−1.

Note how the proposed parameter values are generated using the estimates from the first step

of the procedure (µθ and Ωθ). The main advantage is a better convergence of the parameters

and thus a more accurate comparison of both models in the RJMCMC algorithm. This

two-step procedure is equivalent to using an adaptive MH algorithm for the within-model

part of the RJMCMC algorithm.

In detailing the across-model part of the RJMCMC algorithm, let k = 1 and k = 2

correspond respectively to the Poisson and Negative Binomial models, such that

k = 1 : Yi ∼ Poisson(λi); θ1 = β1, and,

k = 2 : Yi ∼ NegBin(λi, κ); θ2 = (β2, κ),

where λi is specified as in equation (1). The posterior density can be concisely written as

p(k,θk|Y ) ∝

π(k = 1)π(θ1|k = 1)LP (Y |θ1) for k = 1,

π(k = 2)π(θ2|k = 2)LNB(Y |θ2) for k = 2,

with π(θ1|k = 1) given by equation (3) and π(θ2|k = 2) given by multiplying equations (2)

and (3).

When the proposed move is a jump from model 1 to model 2, the current state x = (1,θ1)

has no equivalent for the parameter κ. The idea is then to generate a dummy variable that

will be mapped into a proposed value for κ in model 2. To this end, the strategy is to
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generate u ∼ N(0, σ) and to set x′ = (2,θ′2) where

θ′2 = (β′2, κ
′) = h(β2, u) = (β2, µ exp(u)).

Hence, the vector of parameters β2 is maintained across jumps but κ is generated as a

lognormal random variable to compensate the fact that it has no equivalent in model 1. The

Jacobian of the transformation is straightforward to calculate and yields µ exp(u).

Note how the calibration exercise is crucial to implement an efficient probability of across-

model jump : a good calibration will have values of κ generated close to the real value, since

this will affect the probability that an across-model jump is accepted. A bad calibration

will have values of κ generated far from the real value, affecting the proposed posterior and

making it harder to accept a jump from the Poisson model to the Negative Binomial model.

Using an adaptive MH algorithm improves convergence since the RJMCMC algorithm is

based on parameters estimated from the model in the first stage.

For a jump from model 2 to model 1, there is no need to generate a random variable

since the parameter space is actually reduced. It suffices to use the inverse transformation

h−1 to transform the variables back to the Poisson model. In other words, set (θ1, u) =(
β′1, log(κ′/µ)

)
. The Jacobian of the transformation is then 1

κ′
. Note that in this example,

the parameter κ is only meaningful when considering the Negative Binomial model.

The probability of jumping across models can now be fully described. Particularly, for

the move from 1 to 2 the probability of accepting the jump is given by min{1, A1,2} where

A1,2 =
p(2,θ′2|Y )

p(1,θ1|Y )

{
1√

2πσ2
exp

[
−u2

2σ2

]}−1

µ exp(u)

whereas for the move from 1 to 2 the probability of accepting the jump is given by min{1, A2,1}
where

A1,2 =
p(1,θ1|Y )

p(2,θ′2|Y )

{
1√

2πσ2
exp

[
−
(

log(κ′/µ))2

2σ2

]}
1

κ′
.

In all cases, the initial model states and parameter values are chosen randomly. The exoge-

nous probability of attempting a model jump, jm(x), is set to 0.5. The priors are the same

across all models considered and are set to κ ∼ G(0.001, 100) and βj ∼ N(0, 10). The priors

are chosen to be diffused and do not convey much information about the true parameter val-

ues. The estimates should therefore be close to those obtained through a classical estimation

using Maximum Likelihood, as shown in the results of Section 6. The parameter µ in the

transformation function for an across-model jump is set to 0.005, and the random variable

u is generated according to u ∼ N(0, 0.05).
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5 Data

The dataset consists of a cross-section of observations on consumer loans provided by a

Canadian financial institution. After cleaning it from missing information and outliers, it

includes 37,160 observations extracted on December 31st 2007. The loans are not mortgage

related and are relatively small, the average (standard deviation) face value of the loans is

13,910.24 (9,320.60) with a remaining balance of 5,823.60 (7,090.62).

The dependent variable in the analysis is the number of missed payments on the loan.

Its definition and frequency are reported in Table 1. The mean (standard deviation) value

for the number of missed payments is 0.02322 (0.2761). 98.99% of the sample borrowers

are under 29 days late on their loan payment which does not count as a missed payment (a

billing cycle is assumed to be 30 days) and hence have a missed payment count of 0.

As control variables, I use a variable indicating that a loan is unproductive (since a

late loan might be considered productive or not by the bank, depending on information not

necessarily available in the database provided) and a variable indicating the highest number

of missed payments on the loan since its origination. I choose these two variables because

a loan’s unproductive status captures soft information potentially available to the banker,

while the worst past delinquency sends a strong signal of future delinquency.3 Only 0.6%

of the loans are considered unproductive and the average (standard deviation) of the worst

number of missed payments on the loans is 0.03889 (0.5836).

Table 1: Frequency Table for Missed Payment

# Missed Payments Definition Frequency Percent Cumulative

0 Under 29 days late 36,784 98.99 98.99

1 30 to 59 days late 165 0.44 99.43

2 60 to 89 days late 80 0.22 99.65

3 90 to 119 days late 53 0.14 99.79

4 120 to 149 days late 31 0.08 99.87

5 150 to 179 days late 27 0.07 99.95

6 180 to 209 days late 20 0.05 100

Total 37,160 100

3Other control variables, such as demographics (for example, sex, age, income or dependents), did not
improve the quality of the estimation. Such variables are collected at loan origination and are not updated
at time of default. An ideal situation would be to have a panel dataset to follow the evolution of the missed
payments over time.
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6 Results

In this Section, I present the results of the application to consumer loan payment defaults.

The Reversible Jump algorithm is convenient because the posterior model probability es-

timates are directly available from the output of the simulation so they do not require

additional numerical computations. For a given model k, they are estimated as

p̂(k|Y ) =
1

r − b

r∑
i=b+1

Ii(k),

where the indicator function Ii(k) = 1 if the model is equal to k for observation i and is

equal to zero otherwise. In the case considered, since the prior model probabilities are set

equal to 0.5, the posterior odds and Bayes factors are equal. They are estimated as

P̂O12 = B̂F 12 =
p̂(k = 1|Y )

p̂(k = 2|Y )
.

6.1 Poisson and Negative Binomial Comparison

When comparing the Poisson and Negative Binomial regression models, the RJMCMC al-

gorithm yields a probability of 0.9999 that the true underlying distribution is Negative

Binomial. Although this may seem extreme, the reason is that the overdispersion is so se-

vere in the data when the excess zeros are not modeled that it is virtually impossible to

accept the Poisson model against the Negative Binomial model. This can directly be linked

to the estimated value for κ which is 2.7249. Recall that the Poisson specification implicitly

assumes a value of 0 for κ. This shows that the excess zero realizations in the data induce

an extreme overdispersion which cannot be captured by the Poisson regression model.

In Table 2, I present two sets of results. The first two columns are estimates from the

Bayesian RJMCMC algorithm. I report the posterior mean of each parameter along with

its standard deviation and in brackets, I report the 95% credible interval which is found by

calculating the 2.5% and 97.5% quantiles of the posterior mean distribution. The two last

columns are estimates from the classical MLE estimation and are reported for comparison

purposes. I report each estimated parameter with its standard error and the 95% confidence

interval in brackets. Although both sets of results are very similar, the classical method

does not provide estimated posterior model probabilities, which is the big advantage of the

RJMCMC algorithm in this case. Note that the overdispersion parameter κ is only present

conditional on being in the Negative Binomial specification since it is implicitly assumed to

be 0 in the Poisson model.
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Table 2: Poisson and Negative Binomial Comparison

Bayesian (RJMCMC) Classical (MLE)

Poisson NegBin Poisson NegBin

Constant± σ -4.9098 ± 0.0614 -4.9308 ± 0.0716 -4.9007 ± 0.0603 -4.9316 ± 0.0618
[-5.0328, -4.7825] [-5.0545, -4.8126] [-5.0189, -4.7825] [-5.0527, -4.8104]

Unproductive± σ 5.5454 ± 0.0838 5.0558 ± 0.1504 5.5353 ± 0.0803 5.0626 ± 0.1456
[5.3730, 5.7007] [4.7650, 5.3460] [5.3779, 5.6926] [4.7772, 5.3480]

Worst Default± σ 0.0549 ± 0.0072 0.2553 ± 0.0374 0.0554 ± 0.0073 0.2519 ± 0.0361
[0.0401, 0.0688] [0.1853, 0.3297] [0.0410, 0.0697] [0.1812, .3227]

(κ|k = 2)± σ - 2.7249 ± 0.4331 - 2.6511 ± 0.4166
[1.9540, 3.6488] [1.9484, 3.6073]

p̂(k = 1|Y ) 0.0001
p̂(k = 2|Y ) 0.9999

The first column presents the estimates of the Poisson model as estimated during the

first step of the procedure, after the initial 20,000 burn-in period since the model has not

been visited enough times during the RJMCMC algorithm to provide adequate estimates of

the parameters. For the same reason, in Figure 1a, only the output of RJMCMC chain for

the Negative Binomial model is presented.

For both models, the variables indicating that a loan is unproductive and the worst default

status since loan origination are positive, which shows that both variables have a positive

impact on the current number of missed payments on the loan. The standard deviation of

each parameter are small enough to conclude to a statistically significant effect.

Figure 1a presents the output of the RJMCMC chain for the Negative Binomial regression

model. Since the parameters have been estimated in the first step of the procedure with a

random walk MH algorithm, convergence in the second step is achieved from the first iteration

and does not require a burn-in period. These chains can each be plotted into the posterior

distribution of their respective parameter. Figure 1b presents the autocorrelation function

of the κ as example. The dependence in the output chain shrinks rapidly, as is the case for

all of the estimated parameters.

A posterior model probability of 0.9999 yields a Bayes factor near infinity, which is an

extreme indication that the Negative Binomial model is preferred to the Poisson model.

However, since the excess zero realizations are not modeled in this comparison, they produce

an artificial amount of overdispersion that could be modeled more adequately. For this

reason, I consider the extension to hurdle models in the next section, allowing me to focus

on residual overdispersion, after the excess zero realizations are taken into account properly.
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Figure 1: Convergence of the RJMCMC Output
(Negative Binomial)

(a) Chain Output (b) Autocorrelation of the κ Chain

6.2 Poisson Hurdle and Negative Binomial Hurdle Comparison

When comparing the Poisson Hurdle and Negative Binomial Hurdle regression models, the

RJMCMC algorithm provides an estimated posterior probability of 0.4838 that the true

underlying model is Poisson and an estimated posterior probability of 0.5162 that the true

underlying model is Negative Binomial. In this case, Bayesian averaging would be roughly

equivalent to putting 50% weight on the estimates of each model. This yields Bayes factors

of B̂F 12 = 0.9372 and B̂F 21 = 1.0670, which are very low and provide no significant evidence

that one model outperforms the other.

The interesting feature of the results is that, conditional on modeling the zero realizations

correctly, the Negative Binomial model no longer appears more probable than the Poisson

model in the data, which shows that the excess zeros were causing the overdispersion found

in Section 6.1.

In table 3, I report the results from the Bayesian estimation and I omit the comparison

with the MLE estimation since the results are very close, as was the case previously. Columns

1 and 3 present the results for the binary outcome models and columns 2 and 4 respectively

present the results for the truncated Poisson and Negative Binomial models. In both cases,

the parameters of the hurdle estimations should be interpreted as a binary outcome model,

that is, as the decision between paying the loan on time (the 0 outcome) or missing at least

one payment (the 1 outcome). Both hurdle equations are estimated in the same way (as

derived in Section 1), which explains why their results are very similar. The truncated part

of the model is interpreted as the usual truncated count regressions.
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In every case, the variables indicating that a loan is unproductive and the worst default

status since loan origination are positive, just like in the previous results. The estimated

posterior mean of the overdispersion parameter κ is now 0.0098 with a standard deviation

of 0.0094 which does not provide evidence of significant overdispersion in the truncated part

of the default realizations. In fact, the estimated value for κ is very close to the assumption

that κ = 0 in the Poisson model. This also explains why the estimated parameters for the

truncated Poisson and Negative Binomial models are so similar.

Table 3: Hurdle Models Comparison

Poisson Negative Binomial

Hurdle Truncated Hurdle Truncated

Constant± σ -5.1986 ± 0.0865 -0.5123 ± 0.1108 -5.1671 ± 0.01174 -0.4945 ± 0.1221
[-5.3412, -5.0590] [-0.7400, -0.3010] [-5.3581, -4.9733] [-0.7284, -0.2562]

Unproductive± σ 5.5016 ± 0.1768 1.5413 ± 0.1185 5.2991 ± 0.2013 1.5261 ± 0.1693
[5.1677, 5.8397] [1.3108, 1.7882] [4.9184, 5.6855] [1.1922, 1.8507]

Worst Default± σ 0.1778 ± 0.0367 0.0419 ± 0.0112 0.2026 ± 0.0525 0.0410 ± 0.0144
[0.1102, 0.2516] [0.0265, 0.0565] [0.1016, 0.3058] [0.0119, 0.0694]

(κ|k = 2)± σ - - - 0.0098 ± 0.0094
[0.0021, 0.0293]

p̂(k = 1|Y ) 0.4838
p̂(k = 2|Y ) 0.5162

B̂F 12 0.9372

B̂F 21 1.0670

Figure 2: Convergence Diagram of the RJMCMC Output
(Poisson Hurdle)

(a) Binary Outcome Model (b) Truncated Poisson Model

17



Figure 3: Convergence Diagram of the RJMCMC Output
(Negative Binomial Hurdle)

(a) Binary Outcome Model (b) Truncated Negative Binomial Model

Figures 2 and 3 present the outputs of the RJMCMC algorithm conditional on the model

visited. Since each model has been visited about half of the time, the chains consist of

about 25,000 points each. Since the parameters have been estimated in the first step of the

procedure with a random walk MH algorithm, convergence in the RJMCMC algorithm was

achieved from the first iteration and did not require a burn-in period. The autocorrelation

functions were omitted since they are qualitatively similar to the one presented in Figure 1b.

7 Conclusion

In this note, I present the Reversible Jump MCMC algorithm of Green (1995). The compar-

ison between the Poisson and Negative Binomial models provides an ideal example of model

selection for which the number of parameters varies across models. This simple example

and its application to bank-level data highlights the importance of correctly choosing an

underlying regression model.

When comparing the Poisson and Negative Binomial regression models for consumer loan

default, the latter is found to be the most probable specification. In fact, in a run of the

RJMCMC algorithm, it is virtually impossible to reject the Negative Binomial specification

for the Poisson model. The estimated overdispersion parameter is 2.72, which strongly

contrasts with the assumption that it is 0 in the Poisson model.

However, when introducing hurdle specifications in the comparison between the Poisson

and Negative Binomial models, both of the model are equiprobable. Indeed, after modeling

the excess zeros through a binary outcome model, the estimated overdispersion parameter in
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the Negative Binomial model is approximately 0 which shows that there is no overdispersion

in the truncated part of the count realization.

I use an adaptive version of the RJMCMC algorithm which helps to improve convergence

of the parameters. Although the RJMCMC algorithm provides an easy way to estimate

posterior model probabilities, calibrating the across-model jump in an optimal manner can

sometimes be difficult. By first estimating each of the models separately using a random

walk MH algorithm, I get reasonable estimates of the parameters of each models, which

can then be used in an independent chain MH algorithm. This proves to be both useful to

increase the convergence speed and to provide the estimates of a model that has not been

visited sufficiently in the RJMCMC algorithm.

References
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