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Abstract

In financial markets, the closing price serves as an important benchmark. We intro-

duce a market model to analyze the stability of the closing price with presence of three

types of volume: distorting volume, volume that targets the closing price, and volume

that is unrelated to the closing price. The optimal closing price is either the price from

an auction or the volume weighted average price (VWAP) from regular trading only,

explaining the prevalence of these closing benchmarks on financial markets. A succinct

condition depending on the different volume types indicates when the inclusion of a

closing auction is optimal.
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1 Introduction

Closing prices are important benchmarks in financial markets since many investors use them

as reference points. In practice, two methods to determine the closing price are predominant:

a closing auction, used for stocks at all developed markets and some emerging markets,

and the volume weighted average price (VWAP), common in futures markets and several

emerging stock markets; see FTSE Russell [2019]. A primary concern with benchmark design

is robustness to manipulating or distorting orders. For example, Aspris et al. [2020] analyze

how changes on benchmarks in precious metals markets could reduce manipulation. Another



example is the move of the Paris Bourse (currently Euronext Paris) to a closing auction,

whose main reason was that some relatively small orders could have changed closing prices, as

Pagano and Schwartz [2003] note. The stability issue of closing prices is underlined by judicial

and empirical evidence for their manipulation [Commodity Futures Trading Commission,

2013, Hillion and Suominen, 2004].

The closing price of a stock is especially important to mutual funds as purchases and

redemptions of their shares occur at the day’s closing price of the funds’ constituent assets.

This creates the desire for mutual funds to buy and sell stocks at their closing prices. As a

result, there is a significant portion of volume that follows prices used to create the bench-

marks. This is especially noticeable in markets after the introduction of a closing auction.1

Kandel et al. [2012] as well as Hagströmer and Nordén [2014] find that trader patience in-

creases after the introduction of a closing auction as a result of improved liquidity during

the end of regular trading. It would then be prudent to consider the effect of a benchmark

change that results from such benchmark targeting volume.

We include this volume as a feature of our market model, which also has linear price

impact during regular trading and distorting volume. We take the perspective of a benchmark

administrator, who wishes to minimize the impact of distorting volume on the benchmark.

The administrator decides (1) whether or not to include an auction in the market, (2) the

benchmark weight of the auction if it is included, and (3) the distribution of the remaining

weights in the regular trading. We find a unique optimal benchmark that minimizes the

impact of distorting volume under worst-case scenario assumptions, as well as a succinct

condition for when the inclusion of a closing auction in this market is optimal. We also find

that in the exclusion of a closing auction, the unique optimal benchmark is VWAP and give

a method to find the optimal start time of the window, over which VWAP is computed.

On the one hand, our result explains the prevalence of VWAP and auction benchmarks in

practice; on the other hand, it gives a criterion when VWAP or an auction is preferable, even

determining the optimal window length in the case of VWAP. This condition can be applied

to a market with an estimation of benchmark targeting volume relative to volume that is

unrelated to the benchmark and provides insight into why these two kinds of benchmarks

appear in different markets.

VWAP-type benchmarks have been found to be optimal in different settings and ques-

tions. For example, Duffie and Dworczak [2018] examine optimal benchmarks in settings

where data from transactions or reports of agents whose profits depend on such benchmarks

are available. They find a benchmark that puts small weight on small transactions and nearly

1For large developed markets of stocks, closing auctions account for as much as 20% of the daily traded
volume [Golden, 2018].
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equal weight on all large transactions. When such data is unavailable, VWAP emerges as

the optimal benchmark. Under certain conditions, Baldauf et al. [2020] find VWAP as the

unique optimal benchmark for the principal agent problem of a client contracting a broker to

purchase a large amount of shares. While a closing auction based benchmark may seem more

attractive to agents in the marketplace who target the benchmark, execution algorithms with

VWAP benchmarks are readily available and well studied [Cartea and Jaimungal, 2016, Frei

and Westray, 2015, Guéant and Royer, 2014, Humphery-Jenner, 2011, Kato, 2015].

A VWAP benchmark includes volume that is unrelated to the specific benchmark, pro-

viding additional stability. However, closing auctions can help absorb liquidity shocks by

pooling volume. Foucault et al. [2005] and Roşu [2009] study dynamic models of limit order

markets with strategic liquidity traders of varying patience. Their conclusions indicate that

the introduction of a closing auction can increase trader patience and thus reduce spreads.

These theoretical findings are confirmed by Pagano and Schwartz [2003] and Kandel et al.

[2012] for the stock markets of the Borsa Italiana and the Paris Bourse, where they docu-

ment a significant reduction in spread and volatility around the close when closing auctions

were introduced. For NASDAQ-OMXS30 index futures, which have a closing auction as an

exception among futures markets, Hagströmer and Nordén [2014] find that the introduction

of a closing auction improved closing price accuracy.

The remainder of this paper is organized as follows. Section 2 describes a market model

with linear price impact during regular trading and three types of volume: benchmark

targeting volume, distorting volume, and noise volume that is unrelated to the benchmark.

We use the hypothetical shape of an order book under linear price impact to build supply

and demand curves present in an auction and derive the price impact of an order submitted

to the auction. Section 3 introduces the optimization that the benchmark administrator

faces. We state and discuss the main result, that is, the unique optimal benchmark and the

aforementioned condition for auction inclusion. Its proof is contained in Appendix A.

2 The market model

We consider a discrete market model with T periods consisting of T − 1 periods of regular

trading and possibly an auction at time T .2 We will later introduce a benchmark adminis-

trator, who decides about the closing benchmark and whether or not an auction takes place.

The market is made up of three types of volume:

• Noise or outside volume, denoted as ui, which does not follow the benchmark. This

2Alternatively, we could consider a continuous-time model for regular trading. Our results continue to
hold in such a continuous-time version under a specification analogous to the discrete model that we present.
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volume is unsigned and we assume it to be strictly positive in any regular trading

period so that ui > 0 almost surely for every i = 1, . . . , T − 1.

• Benchmark targeting volume, denoted as αi, which is also unsigned (αi ≥ 0).

• Distorting volume, denoted as vi and summing to V ; this volume is made up of po-

tential distortions to the benchmark. We assume that all vi have the same sign. This

assumption will allow us to analyze the maximal price impact across the different trad-

ing periods in terms of the total distorting volume V . The assumption corresponds to

a worst-case scenario in that the distortions in all periods go in the same direction.

All of ui, αi, vi, and V are random variables. The prices observed are modelled as

pi = p̃i + c
vi

ui + αi
for i = 1, . . . , T − 1,

where we do not make any assumptions on the underlying price process p̃i, which can have

arbitrary distribution and dependence structure. Such a model of temporary price impact

is well founded in the literature. Indeed, linear price impact (in vi) is consistent with price

impact models based on adverse selection [Kyle et al., 2018]. The ratio vi
ui+αi

makes the

price impact dimensionless [Almgren et al., 2005]. The linear price impact model in regular

trading can be seen as each period having an order book with a constant amount of sell orders

above p̃i and a symmetric amount of buy orders below of p̃i. Indeed, the price changes by

one unit for each volume of ui+αi

c
. A continuous version of this order book is shown below

in Figure 1.

p̃i

−ui+αi

c

0

ui+αi

c

1 share

c
ui+αi

Price

Figure 1: the order book such that buying vi shares increases the price by c vi
ui+αi

In the auction, when all volume is pooled, we can represent the price as the intersection

of supply and demand curves. We assume that volume unrelated to the auction, uT , is zero.
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The supply and demand curves correspond to the aggregation of the sell and buy orders,

respectively. Because our model is based on constant amounts of sell and buy orders at

different prices, this aggregation leads to supply and demand curves that are linear and have

the same slope in absolute value, as the integration of a constant results in a linear function.

A distorting buy order will shift the demand curve to the right while a distorting sell order

will shift the supply curve to the right; compare Figure 2.

Quantity

Price

Supply
c
αT

−c
αT

Demand

vT

p̃T

αT

cvT
2αT

+ p̃T

αT + vT
2

Figure 2: the shifting of the demand curve in the auction from a distorting buy order vT

Since the slopes of the supply and demand lines are the negative of one another, shifting

the demand curve by vT causes the new equilibrium quantity to shift by only vT/2, which

results in a price impact of c vT
2αT

. Consequently, we model the auction price as pT = p̃T +c vT
2αT

,

provided that the benchmark administrator decides to have an auction.

3 The benchmark administrator’s optimization

The administrator desires to choose a benchmark such that the impact of the distorting

orders, vi, on the benchmark is minimized. The administrator chooses a nonnegative weight

βi for trading period i, where we normalize
∑T

i=1 βi = 1. Since an auction consists only of

volume related to the benchmark, choosing βT = 0 is equivalent to having no auction. The

impact of the distorting orders on the benchmark is given by
∑T

i=1 βi(pi− p̃i), which depends

on the benchmark weights βi, both directly as the weights of the prices and indirectly through

the benchmark targeting volume that is reflected in the prices pi.

Assumption. We replace αi by Aβi for all i = 1, . . . , T and a random variable A, which is

strictly positive almost surely.
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This assumption means that we consider volume that perfectly matches the benchmark

and thus is proportional to its weights, rather than traders targeting the benchmark with

uncertainty and matching error. Of course, this assumption is idealistic. Nonetheless, it is

not too far away from the reality when benchmark weights depend on the relative volume

curve. Indeed, the relative volume curve can be forecast to a fair degree of accuracy (e.g.,

Exhibit 9 of Satish et al. [2014]). We also note that βT > 0 whenever the auction exists so

that the auction price pT = p̃T + c vT
2AβT

is then well defined.

Because the benchmark is used at the close, the administrator is also worried about the

cost that comes from starting early with nonzero benchmark weights. This cost can be

related to the need of a longer time interval for computing the benchmark, which leads to

additional complexity and means clients of mutual funds would not be able to submit orders

during this time. Let M be the first nonzero weight of the benchmark so that βM 6= 0 and

βi = 0 for all i < M . We model the costs of starting the benchmark computation early by

Q(M), where Q is a strictly decreasing function.

To see why it is desirable to have the benchmark start later in the day, consider a mutual

fund whose inflows occur at the benchmark and a benchmark that starts in the last 10

periods of trading. If an underlying asset in the mutual fund’s price takes a significant jump

with 5 periods left in the day, one could purchase the mutual fund and obtain the constituent

asset at a price that is based on the last 10 periods and likely to be less than the closing

price. To combat this, mutual funds typically do not allow trades during the benchmark

building period.

We assume that the administrator chooses the benchmark at the end of the period and

can observe prices, the outside volumes ui, and the total benchmark targeting volume A. We

denote by F the σ-algebra generated by p1, . . . , pT , u1, . . . , uT , and A so that the benchmark

administrator will make F -measurable choices. Thus, the benchmark administrator faces

the optimization

min
βi,M

{
max
vi

E

[∣∣∣∣∣
T∑

i=M

βi(pi − p̃i)

∣∣∣∣∣+Q(M)

]}
, (1)

where the maximization is over all random variables vi such that
∑T

i=1 vi = V with all vi

having the same sign as V ; the minimization is over all βi and M that are F -measurable and

satisfy
∑T

i=M βi = 1 with βi = 0 for i < M . Our result remains unchanged if the expectation

in (1) is replaced by the F -conditional expectation. We denote by M∗ an F -measurable

random variable that minimizes

cE [|V ||F ]

A+ max{
∑T−1

j=M uj, A}
+Q(M) (2)

6



over M in {1, 2, . . . , T}. Because A and all uj are F -measurable, the random variables in

(2) for every fixed M are F -measurable. Therefore, also the minimum over these T random

variables is F -measurable, and there exists an F -measurable minimizer M∗.

Main Result. There exists a unique optimal benchmark.

On M∗ = T , there is a closing auction and the optimal benchmark puts all weight into

the closing auction with β∗T = 1 and β∗i = 0 for all i < T .

On M∗ < T , there is no closing auction and the optimal benchmark is VWAP with

β∗j =
Aβ∗

j+uj

A+
∑T−1

`=M∗ u`
=

uj∑T−1
`=M∗ u`

for j = M∗, . . . , T − 1 and β∗T = 0 and β∗i = 0 for i < M∗.

Depending on the realization of M∗, the decision of whether or not to have an auction is a

simple yes or no. This is consistent with what we see in practice: VWAP and auction closing

prices are predominant, but no market computes the closing price as a weighted combination

of VWAP and the auction price. The decision between VWAP and closing auction as well as

when to start the VWAP window can be tweaked depending on a benchmark administrator’s

perceived penalty for starting the benchmark period early through the choice of the penalty

Q(M), which has no other effect on the structure of the optimal benchmark.

In the case
∑T−1

j=1 uj ≤ A almost surely, meaning that less volume is unrelated to the

benchmark than volume targeting it, we can see that the ratio cE[|V ||F ]
A+max{

∑T−1
j=M uj ,A}

in (2) does

not depend on M . Because Q is strictly decreasing, it is then optimal to choose M∗ = T ,

and we can deduce from our main result the following corollary.

Corollary. If
∑T−1

j=1 uj ≤ A almost surely, there is a closing auction and the optimal bench-

mark puts all weight into the closing auction with β∗T = 1 and β∗i = 0 for all i < T .

By contrast, if the distributions of
∑T−1

j=1 uj and A overlap or even if
∑T−1

j=1 uj > A almost

surely, then one must choose Q(M) explicitly and optimize (2) over M∗ either analytically

or numerically to determine if a closing auction is optimal or not. If
∑T−1

j=1 uj > A almost

surely and Q has a small slope in absolute value such that its marginal impact on (2) is

minimal, then VWAP will be the optimal benchmark.

Our result suggests the following procedure that assists in the optimal benchmark choice:

1. Determine a maximal acceptable time window for a closing price mechanism, which

will depend on the particular market.

2. Quantify the total volume A that follows the benchmark and the outside volume that

is unrelated to the benchmark. This distinction in trading volumes can be achieved by

comparing historical volume in the closing period with volumes in comparable periods

during the day.
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3a. If A exceeds the total outside volume over the acceptable window, then a closing

auction is optimal.

3b. If A is less than the total outside volume over the acceptable window, we introduce a

function Q that models the cost of starting the benchmark computation early, deter-

mine the minimizer M∗ of (2), and apply our main result.

As an example, we report in Table 1 (on the next page) a volume comparison for the

30 stocks in the Dow Jones Industrial Average (DJIA) during April 2020. For these stocks,

the closing price is determined in auctions. We observe that the auction volume exceeds

the traded volume during the 15 minutes and 30 minutes before the close for most of these

stocks, with the exceptions of Apple (AAPL), Boeing (BA), and Walt Disney Co. (DIS).

Following the procedure described above, this implies by step 3a that a closing auction is

indeed optimal in most of the stocks in the DJIA if the acceptable window is 30 or less

minutes. If an optimal closing mechanism were chosen individually for AAPL, BA, and DIS

with an acceptable window of 30 minutes, the above step 3b shows that further analysis and

the modeling of the function Q depending on the benchmark administrator’s preferences

would be necessary.

Generally, the bigger the benchmark targeting volume is relative to the volume that is

unrelated to the closing price, the more likely the minimizer of (2) will be T so that a closing

auction is optimal. Interestingly, we observe lower volume around the close in emerging

stock markets compared to developed stock markets, which saw a rise in volume around the

close [Golden, 2018]. The above example and this observation motivate why developed stock

markets moved to closing auctions over the last two decades while many emerging stock

markets still use a VWAP benchmark.
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benchmark 15 min 30 min
volume before the before the

close close
AAPL 101.5 71.4 -29.7% 106.0 4.4%
AXP 24.6 17.1 -30.5% 24.5 -0.3%
BA 16.3 40.0 145.0% 67.6 313.9%
CAT 22.6 12.4 -45.2% 16.9 -25.3%
CSCO 134.9 54.5 -59.6% 74.4 -44.9%
CVX 58.1 29.4 -49.3% 41.7 -28.3%
DIS 41.5 28.9 -30.3% 43.3 4.4%
DOW 33.1 16.2 -51.0% 22.5 -32.1%
GS 16.6 11.0 -33.8% 15.6 -6.0%
HD 26.6 12.2 -54.1% 16.9 -36.4%
IBM 31.3 14.1 -55.0% 19.5 -37.9%
INTC 175.1 67.2 -61.6% 90.9 -48.1%
JNJ 67.4 23.9 -64.5% 33.6 -50.1%
JPM 99.4 46.3 -53.4% 66.9 -32.7%
KO 100.7 44.4 -55.9% 60.7 -39.7%
MCD 24.2 11.1 -54.0% 15.5 -36.0%
MMM 23.7 9.4 -60.3% 12.6 -46.8%
MRK 69.9 26.2 -62.5% 36.7 -47.5%
MSFT 179.8 90.2 -49.9% 126.6 -29.6%
NKE 39.8 17.5 -56.1% 24.3 -38.9%
PFE 137.7 55.6 -59.6% 77.6 -43.6%
PG 72.4 30.6 -57.7% 45.1 -37.7%
TRV 14.8 6.2 -57.7% 8.1 -45.4%
UNH 28.5 13.1 -54.1% 17.8 -37.6%
UTX 7.2 4.6 -35.3% 6.7 -6.3%
V 74.1 24.2 -67.3% 34.2 -53.8%
VZ 92.6 38.8 -58.1% 53.9 -41.8%
WBA 39.7 16.9 -57.3% 22.2 -44.1%
WMT 42.3 19.4 -54.3% 28.0 -34.0%
XOM 109.5 62.2 -43.2% 89.4 -18.4%
DJIA 1,905.7 915.1 -52.0% 1,299.4 -31.8%

Table 1: Volume comparison of the 30 stocks in the Dow Jones Industrial Average (DJIA)
during April 2020. All volumes are in million shares, and percentages are relative to the
benchmark volume. The benchmark volume corresponds to volume in the closing auction at
4 pm, which is compared to the volumes between 3:45 pm and 4 pm (15 min before the close)
and between 3:30 pm and 4 pm (30 min before the close). For all stocks except for BA, the
benchmark volume surpasses the volume 15 minutes before the close. The comparison for
the 30-minute window is similar, but there are now three stocks (AAPL, BA, and DIS) with
more traded volume before the close than in the auction. While the volume comparison for
BA stands out, also in other periods its 15-minute and 30-minute volumes before the close
clearly, albeit less extremely exceed its benchmark volume (e.g., in April 2019, 15-minute
and 30-minute volumes for BA were 28.9% and 87.2% higher than the benchmark volume).
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A Proof of the main result

Step 1: inner maximization problem

We first write the inner maximization problem in (1) as

max
vi

E

[∣∣∣∣∣
T∑

i=M

βi(pi − p̃i)

∣∣∣∣∣
]

= cmax
vi

E

[∣∣∣∣∣
T−1∑
i=M

βivi
ui + Aβi

+
vT
2A

1βT 6=0

∣∣∣∣∣
]
. (3)

We will use the auxiliary result that for any nonnegative κM , . . . , κT , we have

max
vi

∣∣∣∣∣
T∑

i=M

κivi

∣∣∣∣∣ = |V | max
j=M,...,T

κj. (4)

This result follows from∣∣∣∣∣
T∑

i=M

κivi

∣∣∣∣∣ ≤
∣∣∣∣∣ max
j=M,...,T

κj

T∑
i=M

vi

∣∣∣∣∣ = |V | max
j=M,...,T

κj,
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where we used for the inequality that all vi have the same sign. Equality holds if vi∗ = V

for i∗ = argmaxi=M,...,Tκi (if there are several i with maximal κi, we can choose i∗ arbitrarily

among them) and vi = 0 for all i 6= i∗.

Using that the worst case of an expectation is given by the worst case in each scenario,

we apply (4) to (3) in each scenario with κi = βi
ui+Aβi

for i = M, . . . , T −1 and κT = 1
2A
1βT 6=0,

which yields

max
vi

E

[∣∣∣∣∣
T∑

i=M

βi(pi − p̃i)

∣∣∣∣∣
]

= cE

[
|V |max

{
max

j=M,...,T−1

βj
uj + αj

,
1

2A
1βT 6=0

}]
. (5)

Step 2: outer minimization problem

Thanks to (5), the optimization problem (1) becomes

min
βi,M

{
E

[
c|V |max

{
max

j=M,...,T−1

βj
uj + Aβj

,
1

2A
1βT 6=0

}
+Q(M)

]}
. (6)

Step 2a: outer minimization problem over βM , . . . , βT−1

For given M < T and βT < 1, we first analyze the minimization of

max
j=M,...,T−1

βj
uj + Aβj

over βM , . . . , βT−1. We note that
βj

uj+Aβj
= 1

A

(
1− uj

uj+Aβj

)
is increasing in βj. In the minimum

over βM , . . . , βT−1, we need equality of the ratios

βi
ui + Aβi

=
βj

uj + Aβj
for all i, j = M, . . . , T − 1,

as otherwise, we could lower maxj
βj

uj+Aβj
by making some βj smaller and adding weight to

another βi. This leads to the optimal β∗j of the form

β∗j = a(uj + Aβ∗j ),

where a is a random variable not depending on j. Using the constraint that
∑T−1

j=M β∗j =

1− βT , we deduce
T−1∑
j=M

β∗j =
T−1∑
j=M

a(uj + Aβ∗j ) = 1− βT ,

which gives the solution

β∗j =
uj + Aβ∗j

A+
∑T−1

i=M ui/(1− βT )
(7)
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since
T−1∑
i=M

Aβ∗i = A(1− βT ).

The above definition of β∗j is equivalent to

β∗j =
uj∑T−1
i=M ui

(1− βT ), (8)

which shows that the optimal β∗j for j = M, . . . , T − 1 are unique when M < T and βT < 1.

Moreover, we see from (7) and (8) that when there is no closing auction, which means

βT = 0, then the optimal benchmark is VWAP with β∗j =
Aβ∗

j+uj

A+
∑T−1

i=M ui
=

uj∑T−1
i=M ui

. Note that

β∗j is F -measurable provided that M is F -measurable.

Step 2b: outer minimization problem over βT and M

Thanks to (7), the optimization problem (6) becomes

min
βT ,M

{
E

[
c|V |max

{
1

A+
∑T−1

i=M ui/(1− βT )
1βT 6=1,

1

2A
1βT 6=0

}
+Q(M)

]}
. (9)

We can write

max

{
1

A+
∑T−1

i=M ui/(1− βT )
1βT 6=1,

1

2A
1βT 6=0

}

=
1

A
max

{
1− βT

1− βT +
∑T−1

i=M ui/A
1βT 6=1,

1

2
1βT 6=0

}

=
1

A

(
1

1 +
∑T−1

i=M ui/A︸ ︷︷ ︸
term 1

1βT=0 + 1βT 6=0 max

{
1− βT

1− βT +
∑T−1

i=M ui/A
,
1

2

}
︸ ︷︷ ︸

term 2

)
. (10)

We analyze the following two cases separately:

1. If
∑T−1

i=M ui > A, then 1

1+
∑T−1

i=M ui/A
< 1

2
so that term 1 is smaller than term 2 in (10).

Therefore, it is optimal to then choose β∗T = 0. Note that this choice is possible because∑T−1
i=M ui > A implies that M < T .

In this case, the value of (10) minimized over βT equals 1

A+
∑T−1

i=M ui
.

2. If
∑T−1

i=M ui ≤ A, then 1

1+
∑T−1

i=M ui/A
≥ 1

2
so that an optimal choice is β∗T ∈ (0, 1] with

1− β∗T
1− β∗T +

∑T−1
i=M ui/A

≤ 1

2
. (11)
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Indeed, term 2 in (10) then equals 1/2 while term 1, which is equal to or greater than

1/2, is not relevant because β∗T > 0.

In this case, the value of (10) minimized over βT equals 1
2A

.

Combining these two cases, we obtain

β∗T

= 0 if
∑T−1

i=M ui > A,

∈ (0, 1] such that
1−β∗

T

1−β∗
T+

∑T−1
i=M ui/A

≤ 1
2

if
∑T−1

i=M ui ≤ A,
(12)

and

min
βT

1

A

(
1

1 +
∑T−1

i=M ui/A
1βT=0 + 1βT 6=0 max

{
1− βT

1− βT +
∑T−1

i=M ui/A
,
1

2

})
=

1

A+
∑T−1

i=M ui
1∑T−1

i=M ui>A
+

1

2A
1∑T−1

i=M ui≤A

=
1

A+ max{
∑T−1

j=M uj, A}
.

Consequently, (9) is reduced to

min
M

E

[
c|V |

A+ max{
∑T−1

j=M uj, A}
+Q(M)

]
= min

M
E

[
cE [|V ||F ]

A+ max{
∑T−1

j=M uj, A}
+Q(M)

]
,

which is minimized by the minimizer of (2).

In the case of β∗T = 0, it follows from (12) with M = M∗ that
∑T−1

i=M∗ ui > A and thus

M∗ < T . Hence, the optimal benchmark is VWAP with β∗j =
uj∑T−1

i=M ui
, as proven in Step 2a.

If β∗T > 0, we saw above in the second case that the value of (10) minimized over βT

equals 1
2A

so that

cE [|V ||F ]

A+ max{
∑T−1

j=M uj, A}
+Q(M) =

cE [|V ||F ]

2A
+Q(M)

on β∗T > 0. Because Q is strictly decreasing, we obtain the optimal M∗ = T , which then

implies that β∗T = 1. Note that condition (11) is satisfied for this choice. Therefore, the only

optimal β∗T > 0 is β∗T = 1, and we obtain the dichotomy presented in the main result: either

all weight is in the auction or the benchmark is VWAP without an auction.
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